The starting point observation is that the dark energy density is in a good approximation found to be proportional to 1/S, where S is the surface area of a large sphere surrounding the region studied. By the way, Sabine makes a little mistake here: she talks about dark energy rather than dark energy density. The reader can check this from the article of by Astashenok and Tepliakov. The model of Tsallis has been given up long ago but the authors represent an argument that since dark energy is not ordinary cosmic fluid, ordinary perturbation theoretic analysis does not apply.
TGD suggests however a much simpler explanation of the finding. In TGD, dark energy is identifiable as a galactic dark matter and consists of magnetic and volume energy assignable to very long monopole flux tubes with a huge string tension. No galactic dark matter halo nor exotic dark matter particles are needed. The galactic velocity spectrum is correctly predicted from the string tension which is also predicted.
To see whether TGD can explain the finding that dark energy density is proportional to 1/S, one must estimate the average density of dark energy in a large cylindrical volume around a long cosmic string. The dark energy is proportional to the length L of the string. The volume is roughly V=SL, where S, is the surface area of the cross section of the cylinder. Therefore one has that dark energy density satisfied E/V= E/SL= 1/S. Just as has been found.
See the article Some strange astrophysical and cosmological findings from the TGD point of view or the chapter About the recent TGD based view concerning cosmology and astrophysics .
For a summary of earlier postings see Latest progress in TGD.
For the lists of articles (most of them published in journals founded by Huping Hu) and books about TGD see this.
No comments:
Post a Comment