Wednesday, July 20, 2016

Pear-shaped Barium nucleus as evidence for large parity breaking effects in nuclear scales?

Pieces of evidence for nuclear physics anomalies continue to accumulate. Now there was a popular article telling about the discovery of large parity breaking in nuclear physics scale. What have been observed is pear-shaped 144Ba nucleus not invariant under spatial reflection. The arXiv article speaks only about octupole moment of Barium nucleus difficult to explain using existing models. Therefore one must take the popular article managing to associate the impossibility of time travel to the unexpectedly large octupole moment with some caution. As a matter fact, pear-shapedness has been reported earlier for Radon-220 and Radium-224 nuclei by ISOLDE collaboration working at CERN (see this and this).

The popular article could have been formulated without any reference to time travel: the finding could be spectacular even without mentioning the time travel. There are three basic discrete symmetries: C,P, T and their combinations. CPT is belived to be unbroken but C,P, CP and T are known to be broken in particle physics. In hadron and nuclear physics scales the breaking of parity symmetry P should be very small since weak bosons break it and define so short scaled interaction: this breaking has been observed.

The possible big news is following: pear-shaped state of heavy nucleus suggests that the breaking of P in nuclear physics is (much?) stronger than expected. With parity breaking one would expect ellipsoid with vanishing octupole moment but with non-vanishing quadrupole moment. This suggests parity breaking in unexpectedly long length scale. This is not possible in standard model where parity breaking is larger only in weak scale which is roughly 1/1000 of nuclear scale and fourth power of this factor reduces the weak parity breaking effects in nuclear scale.

Does this finding force to forget the plans for the next summer's time travel? If parity breaking is large, one expects from the conservation of CPT also large compensating breaking of CT breaking. This might relate to the matter-antimatter asymmetry of the observed Universe and I cannot relate it to time travel since the very idea of time travel in its standard form does not make much much sense to me.

In TGD framework one can imagine two explanations involving large parity breaking in unexpectedly long scales. In fact, in living matter chiral selection represents mysteriously large parity breaking effect and the proposed mechanisms could be behind it.

  1. In in terms of p-adically scaled down variants of weak bosons having much smaller masses and thus longer Compton length - of the order of nuclear size scale - than the ordinary weak bosons have. After this phase transition weak interaction in nuclear scale would not be weak anymore.

  2. In terms of dark state of nucleus involving magnetic flux tubes with large hbar carrying ordinary weak bosons but with scaled up Compton length (proportional to heff/h=n) of order nuclear size. Also this phase transition would make weak interactions in nuclear scale much stronger.

There is a connection with TGD based explanation of X boson anomaly. The model for the recently reported X boson involves both options but 1) is perhaps more elegant and suggests that weak bosons have scaled down variants even in hadronic scales: the prediction is unexpectedly large parity breaking. This is amusing: large parity breaking in nuclear scales for three decades ago one of the big problems of TGD and now it might have been verified!

See the chapter Nuclear string hypothesis of "Hyper-finite factors, p-adic length scale hypothesis, and dark matter hierarchy".

For a summary of earlier postings see Latest progress in TGD.

Monday, July 18, 2016

CMS provides evidence for two new spin 2 mesons of M89 hadron physics

I summarized few days ago the recent evidence for M89 hadron physics (see this. Today Lubos told about very interesting new bumps reported by CMS in ZZ channel. There is 3-4 sigma evidence in favor of a 650 GeV boson. Lubos suggests an interpretation as bulk graviton of Randall-Sundrum model. Lubos mentions also evidence for a boson of gamma-gamma resonance with mass 975 GeV.

M89 hadron physics explains the masses for a variety of bumps observed hitherto. The first guess therefore that mesons of M89 hadron physics are in question. By performing the now boringly familiar scaling down of masses by factor 1/512 for the masses one obtains the masses of corresponding mesons of ordinary hadron physics: one obtains 1270 MeV and 1904 MeV corresponding to 650 GeV and 975 GeV. Do ordinary mesons with these masses exist?

To see that this is the case, one can go to the table of exotic mesons . There indeed is exotic graviton like meson f2++(1270). Complete success! There is also exotic meson f2++(1910): the mass differs from the predicted 1904 MeV by .15 per cent. Graviton like states understandable as tetraquark states not allowed by the original quark model would be in question. The interested reader can scale up the masses of other exotic mesons identifiable as candidates for tetraquarks to produce predictions for new bumps to be detected at LHC.

Both states have spin 2 as also Randall-Sundrum bulk gravitons. What distinguishes the explanations that TGD predicts the masses of these states with an excellent accuracy and predicts a lot of more: just take the table of mesons and multiply by 512 and you can tell your grand children that you predicted entire spectroscopy correctly!

In TGD framework these states are indeed possible. All elementary particles and also meson like states correspond to pairs of wormhole contacts. There is closed monopole flux tube with the shape of highly flattened square with long sides of the order of Compton length in question and short sides of the order of CP2 size. The wormhole throats of both wormhole contact carry quark and antiquark and and one can see the structure either as a pair of gauge boson like states associated with the contacts or as a pair of mesonlike states at the two space-time sheets involved.

For background see the article Indications for the new physics predicted by TGD and the chapter New Particle Physics Predicted by TGD: Part I of "p-Adic physics".

For a summary of earlier postings see Latest progress in TGD.

Thursday, July 14, 2016

What if 750 GeV bump disappears?

I have been working for years with M89 hadron physics hypothesis inspired originally by p-adic length scale hypothesis around 1995 and also by strange cosmic ray events (see this). Later I realized that the strange and unexpected findings about the properties of quark gluon plasma could be perhaps understand in terms of M89 hadron physics. This inspired to consider also the possibility that the the candidates for M89 mesons are produced as dark particles having Compton length which is of same order of magnitude as proton Compton length.

If dark variants of particles are produced only at quantum criticality, it might happen that the production of M89 mesons occurs considerably only around critical collision energy for the proton beams at LHC and the bumps could disappear at higher LHC energies. Unfortunately, quantum criticality does not belong to the vocabulary of particle physicists so that I must be ready to tolerate merciless ridicule also in future! This seems to be the universal fate of all who see farther off than others.

I collect here what looks like the quintessence of the comments about M89 hadron physics. I have not edited the old comments and it I cannot exclude the possibility of some small internal inconsistencies.

Some background

Large Hadron Collider May Have Produced New Matter is the title of popular article explaining briefly the surprising findings of LHC made for the first time September 2010. A fascinating possibility is that these events could be seen as a direct signature of brand new hadron physics. I distinguish this new hadron physics using the attribute M89 to distinguish it from ordinary hadron physics assigned to Mersenne prime M107 =2107 -1.

Quark gluon plasma is expected to be generated in high energy heavy ion collisions if QCD is the theory of strong interactions. This would mean that quarks and gluons are de-confined and form a gas of free partons. Something different was however observed already at RHIC: the surprise was the presence of highly correlated pairs of charged particles. The members of pairs tended to move in parallel: either in same or opposite directions.

This forced to give up the description in terms of quark gluon plasma and to introduce what was called color glass condensate. The proposal was that so called color glass condensate, which is liquid with strong correlations between the velocities of nearby particles rather than gas like state in which these correlations are absent, is created: one can imagine that a kind of thin wall of gluons is generated as the highly Lorentz contracted nuclei collide. The liquid like character would explain why pairs tend to move in parallel manner. Why they can move also in antiparallel manner is not obvious to me although I have considered the TGD based view about color glass condensate inspired by the fact that the field equations for preferred extremals are hydrodynamical and it might be possible to model this phase of collision using scaled version of critical cosmology which is unique apart from scaling of the parameter characterizing the duration of this critical period. Later LHC found a similar behavior in heavy ion collisions. The theoretical understanding of the phenomenon is however far from complete.

The real surprise was the observation of similar events in proton proton collisions at LHC: for the first time already at 2010. Lubos Motl wrote a nice posting about this observation. Also I wrote a short comment about the finding. Now the findings have been published: preprint can be found in arXiv. Below is the abstract of the preprint.

Results on two-particle angular correlations for charged particles emitted in pPb collisions at a nucleon-nucleon center-of-mass energy of 5.02 TeV are presented. The analysis uses two million collisions collected with the CMS detector at the LHC. The correlations are studied over a broad range of pseudorapidity η, and full azimuth φ, as a function of charged particle multiplicity and particle transverse momentum, pT. In high-multiplicity events, a long-range (2<|(Δ η| <4), near-side Δ φ approximately 0) structure emerges in the two-particle Δ η-Δ φ correlation functions. This is the first observation of such correlations in proton-nucleus collisions, resembling the ridge-like correlations seen in high-multiplicity pp collisions at s1/2 = 7 TeV and in A on A collisions over a broad range of center-of-mass energies. The correlation strength exhibits a pronounced maximum in the range of pT = 1-1.5 GeV and an approximately linear increase with charged particle multiplicity for high-multiplicity events. These observations are qualitatively similar to those in pp collisions when selecting the same observed particle multiplicity, while the overall strength of the correlations is significantly larger in pPb collisions.

Second highly attractive explanation discussed by Lubos Motl is in terms of production of string like objects. In this case the momenta of the decay products tend to be parallel to the strings since the constituents giving rise to ultimate decay products are confined inside 1-dimensional string like object. In this case it is easy to understand the presence of both parallel and antiparallel pairs. If the string is very heavy, a large number of particles would move in collinear manner in opposite directions. Color quark condensate would explain this in terms of hydrodynamical flow.

In TGD framework these string like objects would correspond to color magnetic flux tubes. These flux tubes carrying quark and antiquark at their ends should however make them manifest only in low energy hadron physics serving as a model for hadrons, not at ultrahigh collision energies for protons. Could this mean that these flux tubes correspond to hadrons of M89 hadron physics? M89 hadron physics would be low energy hadron physics since the scaled counterpart of QCD Λ around 200 MeV is about 100 GeV and the scaled counterpart of proton mass is around.5 TeV (scaling is by factor is 512 as ratio of square roots of M89 =289 -1, and M107 ). What would happen in the collision would be the formation of p-adically hot spot at p-adic temperature T=1 for M89 .

For instance, the resulting M89 pion would have mass around 67.5 GeV if a naive scaling of ordinary pion mass holds true. p-Adic length scale hypothesis allows power of 21/2 as a multiplicative factor and one would obtain something like 135 GeV for factor 2: Fermi telescope has provided evidence for this kind particle although it might be that systematic error is involved (see the nice posting of Resonaance). The signal has been also observed by Fermi telescope for the Earth limb data where there should be none if dark matter in galactic center is the source of the events. I have proposed that M89 hadrons - in particular M89 pions - are also produced in the collisions of ultrahigh energy cosmic rays with the nuclei of the atmosphere: maybe this could explain also the Earth limb data. Recall that my first erratic interpretation for 125 GeV Higgs like state was as M89 pion and only later emerged the interpretation of Fermi events in terms of M89 pion.

Could M89 hadrons give rise to the events?

One can consider a more concrete model for the situation.

  1. The first picture is that M89 color magnetic flubes tubes are created between the colliding protons and have length and thickness which is 512 shorter than that of ordinary hadronic color flux tubes and therefore also 512 times higher energy. The energy of colliding protons would be partially transformed to that of M89 mesons. This process should occur above critical collision energy Ecr(p)=512 mp∼ .5 TeV and perhaps already above Ecr(p)= m(pi89)=67.5 GeV. One can worry about the small geometric size of M89 mesons: is it really possible to transfer of energy of protons consisting of quarks to a scale shorter by factor 1/512 or does this process occur at quark level and doesn't one encounter the same problem here? This problem leads to second picture.

  2. M89 mesons could be dark so that their size is same as the size of protons: this could make possible a collective transfer of collision energy in the scale of entire proton to that of dark M89 mesons transforming later to much smaller ordinary M89 mesons. If this is the size the value heff/h=512 is favourable.

  3. The proposal (see this) is that dark phases of matter are generated at quantum criticality: does quantum criticality mean now that dark M89 mesons are created only near the threshold for the process but not at higher collision energies? If so, the production of M89 mesons would be observed only near energies Ecr assignable to proton-proton cm and quark-quark cm. For constituent quarks identifiable as current quark plus its magnetic body, the masses would be roughly mp/3 and one would have Ecr(q)=3 Ecr(q) (note that the masses of u and d current quarks are the scale of 5-20 MeV so thatcolor magnetic energy dominates baryon mass).

  4. This brings in mind leptohadron model (see this) explaining the reported production of mesonlike states in heavy ion collisions. These states had mass slightly larger than twice the mass of electron and they decayed to electron-positron pair. The production was observed only in the vicinity of Coulomb wall of order MeV, the mass of electro-pion. The explanation is in terms of color excited electrons forming pion like bound state. If color excited leptons are light, the decay widths of weak bosons are predicted to be too large. If the produced states are dark, one circumvents this problem. Quantum criticality corresponds to Coulomb wall and explains why the production occurs around it.

    In the recent case quantum criticality could mean the threshold for production of M89 mesons. The bad news is that quantum criticality could mean that M89 mesons are not produced at higher LHC energies so that the observed bumps assignable to M89 would suffer the usual fate of the bump. Since quantum criticality does not belong to the conceptual repertoire of particle physicists, one cannot expect that the notion of M89 hadron would be accepted easily by the community.

Further indications for M89 hadron physics

During last years several indications for the new physics suggested by TGD have emerged. Recently the first LHC Run 2 results were announced and there was a live webcast (see this).

  1. The great news was the evidence for a two photon bump at 750 GeV about which there had been rumors. Lubos told earlier about indications for diphoton bump around 700 GeV. If the scaling factor is the naive 512 so that M89 pion would have mass about 70 GeV, there are several meson candidates. The inspection of the experimental meson spectrum (see this) shows that there is quite many resonances with desired quantum numbers. The scaled up variants of neutral scalar mesons η(1405) and η(1475) consisting of quark pair would have mases 719.4 GeV and 755.2 GeV and could explain both 700 GeV and 750 bump. There are also neutral exotic mesons which cannot be quark pairs but pairs of quark pairs (see this) f0(400), f0(980), f2(1270), f0(1370), f0(1500), f2(1430), f2(1565), f2(1640), f?(1710) (the subscript tells the total spin and the number inside brackets gives mass in MeVs) would have naively scaled up masses 204.8, 501.8, 650.2, 701.4, 768.0, 732.2, 801.3, 840.0, 875.5 GeV. Thus f0 meson consisting of two quark pairs would be also a marginal candidate. The charged exotic meson a0(1450) scales up to 742.4 GeV state.

  2. There is a further mystery involved. Matt Strassler (see this) emphasizes the mysterious finding fact that the possible particle behind the bump does not seem to decay to jets: only 2-photon state is observed. Situation might of course change when data are analyzed. Jester (see this) in fact reports that 1 sigma evidence for Zγ decays has been observed around 730 GeV. The best fit to the bump has rather large width, which means that there must be many other decay channels than digamma channels. If they are strong as for TGD model, one can argue that they should have been observed.

    As if the particle would not have any direct decay modes to quarks, gluons and other elementary particles. If the particle consists of quarks of M89 hadron physics it could decay to mesons of M89 hadron physics but we cannot directly observe them. Is this enough to explain the absence of ordinary hadron jets: are M89 jets somehow smoothed out as they decay to ordinary hadrons? Or is something more required? Could they decay to M89 hadrons leaking out from the reactor volume before a transition to ordinary hadrons?

    Or could a more mundane explanation work? Could 750 GeV states be dark M89 eta mesons decaying only via digamma annihilation to ordinary particles be in question? For ordinary pion the decays to gamma pairs dominate over the decays to electron pairs. Decays of ordinary pions to lepton or quark pairs must occur either by coupling to axial weak current or via electromagnetic instanton term coupling pseudo-scalar state to two photon state. The axial current channel is extremely slow due to the large mass of ordinary weak bosons but I have proposed that variants of weak bosons with p-adically scaled down masses are involved with the decays recently called X bosons (see this) and perhaps also with the decays of ordinary pion to lepton pairs). Pseudoscalar can also decay to virtual gamma pair decaying to fermion pair and for this the rate is much lower than for the decay to gamma pair. This would be the case also for M89 mesons if the decays to lepton or quark pair occurs via these channels. This might be enough to explain why the decay products are mostly gamma pairs.


  3. Above arguments suggest the production of dark M89 hadrons with heff/h=512 at quantum criticality. The TGD inspired idea that M89 hadrons are produced at RHIC in heavy ion collisions and in proton heavy ion collisions at LHC as dark variants with large value of heff= n× h with scaled up Compton length of order hadron size or even nuclear size conforms with finding that the decay of string like objects identifiable as M89 hadrons in TGD framework explains the unexpected properties of what was expected to be simple quark gluon plasma analogous to blackbody radiation.

    Quantum criticality (see this) suggests that the production of dark M89 mesons (responsible for quantal long range correlations) is significant only near the threshold for their production (the energy transfer would take place in scale of proton to dark M89 meson with size of proton). Note that in TGD inspired biology dark EEG photons would have energies in bio-photon energy range (visible and UV) and would be exactly analogous to dark M89 hadrons. The criticality could correspond to the phase transition from confined to de-confined phase (at criticality confinement with much larger mass but with scaled up Compton wavelength!).

    The bad news is that the rate for the production of M89 mesons with standard value of Planck constant at higher LHC energies could be undetectably small. If this is the case, there is no other way than tolerate the ridicule, and patiently wait that quantum criticality finds its place in the conceptual repertoire of particles physicists. New results about 750 GeV bump will be released at the beginning of August and there are "reliable" rumors that the bump is disappearing. The group led by my finnish colleague Risto Orava (we started as enthusiastic physics students at the same year and were coffee table friends) is scanning for old LHC data for possible evidence for 750 GeV state. If the bump is there but disappears at higher energies, it would provide support for quantum criticality.

  4. Lubos mentions in his posting several excesses, which could be assigned with the above mentioned states. The bump at 750 GeV could correspond to scaled up copy of η(1475) or - less probably - f0(1500). Also the bump structure around 700 GeV for which there are indications (see this) could be explained as a scaled up copy of η(1405) or f0(1370) with mass around 685 GeV. Lubos mentions also a 662 GeV bump (see this). If it turns out that there are several resonances in 700 TeV region (and also elsewhere) then the only reasonable explanation relies on hadron like states since one cannot expect a large number of Higgs like elementary particles. One can of course ask why the exotic states should be seen first.

  5. Remarkably, for the somewhat ad hoc scaling factor 2× 512∼ 103 one does not have any candidates so that the M89 neutral pion should have the naively predicted mass around 67.5 GeV. Old Aleph anomaly > had mass 55 GeV. This anomaly did not survive. I found from my old writings > that Delphi and L3 have also observed 4-jet anomaly with dijet invariant mass about 68 GeV: M89 pion? There is indeed an article about search of charged Higgs bosons in L3 (see this) telling about an excess in csbarτ-νbarτ production identified in terms of H+H- annihilation suggesting charged Higgs mass 68 GeV. TGD based interpretation would in terms of the annihilation of charged M89 pions.

    The gammas in 130-140 GeV range detected by Fermi telescope (see this) were the motivation for assuming that M89 pion has mass twice the naively scaled up mass. The digammas could have been produced in the annihilation of a state with mass 260 GeV. The particle would be the counterpart of the ordinary η meson η(548) with scaled up mass 274 GeV thus decaying to two gammas with energies 137 GeV. An alternative identification of the galactic gamma rays in terms of gamma ray pairs resulting in the annihilation of two dark matter particles nearly at rest. It has been found that this interpretation cannot be correct (see this).

    Also scaled up eta prime should be there. Also an excess in the production of two-jets above 500 GeV dijet mass has been reported (see this) and could relate to the decays of η'(958) with scaled up mass of 479 GeV! Also digamma bump should be detected.

  6. What about M89 kaon? It would have scaled up mass 250 GeV and could also decay to digamma. There are indications for a Higgs like state with mass of 250 GeV from ATLAS (see this! It would decay to 125 GeV photons - the energy happens to be equal to Higgs mass. There are thus indications for both pion, kaon, all three scaled up η mesons and kaon and η' with predicted masses! The low lying M89 meson spectroscopy could have been already seen!

  7. Lubos mentions (see this) also indications for 285 GeV bump decaying to gamma pair. The mass of the eta meson of ordinary hadron physics is .547 GeV and the scaling of eta mass by factor 512 gives 280.5 GeV : the error is less than 2 per cent.

  8. Lubos tells (see this) about 3 sigma bump at 1.650 TeV assigned to Kaluza-Klein graviton in the search for Higgs pairs hh decaying to bbbar +bbbar>. Kaluza-Klein gravitons are rather exotic creatures and in absence of any other support for superstring model they are not the first candidate coming into my mind. I do not know how strong the evidence for spin 2 is but I dare to consider the possibility of spin 1 and ask whether M89 hadron physics could allow an identification for this bump.

    1. Very naively the scaled up J/Psi of the ordinary M107 hadron physics having spin J=1 and mass equal to 3.1 GeV would have 512 times higher mass 1.585 TeV: error is about 4 per cent. The effective action would be based on gradient coupling similar in form to Zhh coupling. The decays of scaled up Ψ/J could take place via hh → bbbar+bbbar also now.

    2. This scaling might be too naive: the quarks of M89 hadron physis might be same as those of ordinary hadron physics so that only the color magnetic energy would be scaled up by factor 512. c quark mass is equal 1.29 GeV so that the magnetic energy of ordinary J/Psi would be equal to .52 GeV. If so, M89 version of J/Psi would have mass of only 269 GeV. Lubos tells also about evidence for a 2 sigma bump at 280 GeV identified as CP odd Higgs - this identification of course reflects the dream of Lubos about standard SUSY at LHC energies. However, the scaling of η meson mass 547.8 MeV by 512 gives 280.4 GeV so that the interpretation as η meson proposed already earlier is convincing. The naive scaling might be the correct thing to do also for mesons containing heavier quarks.

  9. Lubos (see this) also tells about an excess (I am grateful for Lubos for keeping book about the bumps: this helps enormously), which could have interpretation as the lightest M89 vector meson - ρ89 or ω89. Mass is the predicted correctly with 5 per cent accuracy by the familiar p-adic scaling argument: multiply the mass of ordinary meson with 512.

    This 375 GeV excess might indeed represent the lightest vector meson of M89 hadron physics. ρ and ω of standard hadron physics have mass 775 MeV and the scaled up mass is about 397 GeV, which is about 5 per cent heavier than the mass of Zγ excess.

    The decay ρ→ Z+γ describable at quark level via quark exchange diagram involving emission of Z and γ. The effective action would be proportional to Tr(ρ*γ*Z), where the product and trace are for antisymmetric field tensors. This kind effective action should describe also the decay to gamma pair. By angular momentum conservation the photons of gamma pairs should be in relative L=1 state. Since Z is relativistic, L=1 is expected to be favored also for Z+γ final state. Professional could immediately tell whether this is correct view. Similar argument applies to the decay of ω which is isospin singlet. For charged ρ also decays to Wγ and WZ are possible. Note that the next lightest vector meson would be K* with mass 892 MeV. K*89 should have mass 457 GeV.

  10. Lubos (see this) also reports that ATLAS sees charged boson excess manifesting via decay to tb in the range 200-600 TeV. Here Lubos takes the artistic freedom to talk about charged Higgs boson excess since Lubos still believes in standard SUSY predicting copies several Higgs doublets. TGD does not allow them. In TGD framework the excess could be due to the presence of charged M89 mesons: pion, kaon, ρ, ω.

  11. A smoking gun evidence would be detection of production of pairs of M89 nucleons with masses predicted by naive scaling to be around 470 GeV. This would give rise to dijets above 940 GeV cm energy with jets having total quantum numbers of ordinary nucleons. Each M89 nucleon consisting of 3 quarks of M89 hadron physics could also transform to ordinary quarks producing 3 ordinary hadron jets.

For background see the article Indications for the new physics predicted by TGD and the chapter New Particle Physics Predicted by TGD: Part I of "p-Adic physics".

For a summary of earlier postings see Latest progress in TGD.

Tuesday, July 12, 2016

Lightnings, dark matter, and lepto-pion hypothesis again

Lightnings have been found to involve phenomena difficult to understand in the framework of standard physics. Very high energy photons, even gamma rays and electrons and positrons with energies in gamma energy range, have been observed.

I learned recently about even more mysterious looking discovery (see this). Physicist Joseph Dwyer from University of New Hampshire and lightning scientists from the University of California at Santa Cruz and Florida Tech describe this discovery in a paper to be published in the Journal of Plasma Physics. In August 2009, Dwyer and colleagues were aboard a National Center for Atmospheric Research Gulfstream V when it inadvertently flew into the extremely violent thunderstorm - and, it turned out, through a large cloud of positrons, the antimatter opposite of electrons, that should not have been there. One would have expected that positrons would have been produced by annihilation of highly energetic gamma rays with energy above .5 MeV but no gamma rays were detected.

This looks rather mysterious from standard physics point of view. There are also earlier strange discoveries related to lightnings.

  1. Lightning strikes release powerful X-ray bursts (see "Lightning strikes release powerful X-ray bursts" ).

  2. Also high energy gamma rays and electrons accompany lightnings (see "Earth creates powerful gamma-ray flashes"). The problem is that electrons should lose their energy while traversing through the atmosphere so that energies in even X ray range would be impossible.

  3. The third strange discovery was made with Fermi telescope (see "Antimatter from lightning flashes the Fermi space telescope"): gamma rays with energies .511 MeV (electron mass) accompany lightnings as if something with mass of 2 electron masses would decay to gamma pairs.

Could TGD explain these findings?
  1. A possible explanation for the finding of Fermi telescope is that in the strong magnetic field of colliding very high energy colliding electrons assignable to the dark magnetic flux tubes of Earth particles that I call electropions suggested by TGD are created (see this). Also evidence for mu-pions and tau-pions exists. They would have mass rather precisely 2 times the mass of electron and would be bound states of color excited electron and positron. Evidence for this kind of states was found already at seventies in heavy ion collisions around Coulomb wall producing electron positron pairs at total energy of 2 times electron mass but since they do not fit at all to the standard physics picture (too large decay width for weak bosons would be predicted) they have been put under the rug, so to say. The paradox is solved if these particles are dark in TGD sense.

  2. If the annihilations of electropions give rise to dark electron-positron pairs and dark gamma rays, which then transform to ordinary particles, one could understand the absence of gamma rays in the situation described by Dwyer et al in terms of too slow transformation to ordinary particles. For instance, the strong electric fields created by a positively charged region of cloud could accelerate electron from both downwards and upwards to this region and lepto-pions would be generated in the strong magnetic fields generating strong electromagnetic instanton density E•B generating lepto-pion coherent state.

  3. But how it is possible to observe gamma rays and ultrahigh energy electrons at the surface of Earth? The problem is that atmosphere is not empty and dissipation would restrict the energies to be much lower than gamma ray energies which are in MeV range. Note that the temperatures in lightning are about 3× 104 K and correspond to electron energy of 2.6 eV which is by a factor 105 smaller than electron mass and gamma ray energy scale! And how the electrons with energies above MeV range are created in thunder cloud? For years ago I proposed a model for high energy gamma rays and electrons associated with lightnings in terms of dark matter identified as heff=n× h phases. This model could provide answer to these questions.

First some background is needed.
  1. I ended up to heff=n× h hypothesis from the observations of Blackman and other pioneers of bio-electromagnetism about quantal effects of ELF em fields to vertebrate brain, which he explained in terms of cyclotron frequencies of Ca++ ion in endogenous magnetic field Bend=0.2 Gauss (2/5:th of the nominal value BE=.5 Gauss of the Earth's magnetic field). Cyclotron energy E= h× f is however extremely low, much below the thermal energy in physiological temperature so that no quantal effects should be possible. This inspired the hypothesis heff=n× h scaling up the energy.

  2. Nottale introduced originally the notion of gravitational Planck constant hgr= GMm/v0 to explain the orbital radii of planets in solar system as Bohr orbits. The velocity parameter v0 is different for inner and outer planets. Quite recently I proposed v0 is in constant ratio to the rotation velocity of the large mass M. The interpretation in TGD framework is that the magnetic flux tubes mediate gravitational interaction between M and m and the value of Planck constant is hgr at them. The proposal heff=hgr at flux tubes is very natural sharpening of the original hypothesis. The predictions of the model do not depend on whether m is taken to be the mass of the planet or any elementary particle associated with it and the gravitational Compton length λgr= GMc/v0 does not depend on the mass of the particle as is proportional to the Schwartschild radius 2GM of Sun.

  3. This hypothesis can be generalized to apply also to Earth (see this). For the strength Bgal∼ 1 nT for galactic magnetic field assumed to mediate Earth's gravitational interaction cyclotron frequency 10 Hz in alpha band is mapped to cyclotron frequency scale of 72 minutes. Scaled EEG range corresponds to cyclotron periods varying up to 12 hours for Bgal. For M= ME and Bgal the cyclotron energy corresponds to about 1 eV at the lower end of visible photon energies.

  4. What about the interpretation of ordinary EEG in terms of cyclotron frequencies assuming that the corresponding energies are in visible and UV range corresponding to the variation of Bend? ME is certainly too large to give a spectrum of cyclotron energies in this range suggested by Blackman to explain the findings about quantal effects of ELF radiation on brain not possible in standard quantum theory because the energy is much below the thermal threshold. MD= .5 × 10-4 ME would be needed. I have proposed that MD corresponds to a mass assignable to a spherical layer at distance of Moon's orbital radius and there are independent pieces of evidence for the existence of this layer. Bend would represent the lower bound for the value range of the magnetic field varying at least by 7 octaves would give the highest UV energies around 124 eV. The transformation of dark photons to ordinary photons would yield biophotons with energies in visible and UV range. Also Bgal would have some variation range.

  5. This has a connection to quantum biology and neuroscience. The proposal is that dark cyclotron photons with energies in visible and UV range associated with flux tubes of magnetic field of appropriate strength serve as a communication tool making biological body (BB) to communicate sensory data to magnetic body (MB) and allow BB to control BB.

Consider now the model for how electrons and gamma rays accompanying lightnings can travel to the surface of Earth without dissipating their energies and how the collisions of electrons with gamma ray energies generating electropions are possible.
  1. What happens if one replaces MD with ME meaning that also Earth's gravitons could reside also at the flux tubes of Bend rather than only those of Bgal? The energies get scale up by a factor ME/M1= 2× 104 and this scales up the 1-100 eV range .02-2 MeV so that also gamma ray energies would be obtained.

  2. The earlier proposal was that electrons and gamma rays associated with lightning arrive to the surface of Earth along dark magnetic flux tubes so that by macroscopic quantum coherence in scale of λgr they do not dissipate their energy.

See the chapter Recent status of leptopion hypothesis of "Hyper-finite factors, p-adic length scale hypothesis, and dark matter hierarchy".

For a summary of earlier postings see Latest progress in TGD.

Sunday, July 10, 2016

Details related to adelic NMP

What happens in state function reduction and what NMP really says is still far from being completely clear. The basic condition is that standard measurement theory emerges as a special case and is forced by NMP. This does not however fix the
NMP completely.

1. Adelic NMP as the only reasonable option

During years I have considered two options for NMP.

  1. In the original approach to NMP it was assumed that both generic entanglement with real entanglement probabilities and entanglement with algebraic entanglement probabilities are possible. Real entanglement is entropic and demands standard measurement theory leading to a 1-D eigen-space of the density matrix. Algebraic entanglement can be negentropic in number theoretic sense for some p-adic primes, and in this case state function reduction occurs only if it increases negentropy. It takes place to N-dimensional eigen-space of the density matrix. The basic objection is that real entanglement is transcendental in the generic case reducing to algebraic entanglement only as a special case. Algebraic entanglement is also extremely rare without additional physical assumptions.

  2. In the adelic approach entanglement coefficients and therefore also entanglement probabilities are always algebraic numbers from the condition that the notion of p-adic Hilbert space makes sense. Also extensions of rationals defining finite-dimensional extension of p-adic numbers (roots of e can appear in extension) must be allowed. Same entanglement can be seen from both real (sensory) and p-adic perspectives (cognitive). The entanglement is always entropic in the real sector but can be negentropic in some p-adic sectors. It is now clear that the adelic option is the only sensible one.

2. Variants of the adelic NMP

The adelic option allows to consider several variants.

  1. Negentropy could correspond a) to the sum N= NR+∑p Np of real and various p-adic negentropies or b) to the sum N=∑ Np of only p-adic negentropies. Np is non-vanishing for a finite number of p-adic primes only as is easy to find. In both cases ∑p Np could be interpreted as negentropy assignable to cognition. NR might have interpretation as a measure of ignorance of one of the entangled systems about the state of other.

  2. NMP implies that state function reduction (measurement of density matrix leading to its eigen-space) occurs if negentropy 1) is not reduced or 2) increases. This means that negentropic entanglement is stable against NMP.

Can one select between these options?
  1. For option a) NMP becomes trivial for rational entanglement probabilities as is easy to find: one has N= NR+∑p Np=0. NMP does not force state function reduction to occur but it could occur and imply ordinary state function reduction as a special case for option 1) (when eigen-spaces are 1-dimensional). Therefore one would have option 1a).

  2. If option 1a) is unrealistic, only the options 1b) and 2b) with N= ∑p Np are left. For option 2b) state function necessarily occurs for N=∑p Np<0 but not for N=0 - not even in rational case. For option 2b) the state function reduction could occur also for N=0. However, since Np is proportional to log(p) and the numbers log(p) are algebraically independent, N=0 is not actually possible so that 1b) and 2b) are equivalent. Therefore NMP states that N=∑p Np must increase for N<0: this forces state function reduction to an eigen-space of density matrix.

    But is it really possible to have ∑ Np<0 making possible ordinary state function reduction? For rational entanglement probabilities this is not possible by SR= ∑p Np and one might even speculate that for algebraic extensions one as ∑p Np≥ SR. Mathematician could probably check the situation. ∑p Np≥ SR holds true, entanglement is stable against NMP and ordinary state function reduction is not possible. This would leave only the option 1a) and negentropic entanglement with N>0 would be stable also now. N=0 entanglement (possibly rational always) would allow ordinary state function reduction.

This leaves still two options. Negentropy gain is A) maximal or B) non-negative but not necessarily maximal: I have considered the latter option earlier. For option 1a) reduction is possible only for N=0 and in this case negentropy gain is zero for all possible eigen-spaces of density matrix and maximality condition does not say anything.
  1. For option 1a) reduction is possible only for N=0 and in this case negentropy gain is zero for all possible eigen-spaces of density matrix and A) and B) are equivalent. One obtains ordinary state function reductions.

  2. Consider next the equivalent options 1b) and 2b) making sense if ∑p Np<0 is possible. For option A) negentropy gain is maximal and the reduction occurs to an eigen-space with maximum dimension N=Nmax. There can be several eigen-spaces with the same maximal dimension. As a special case one obtains ordinary state function reduction. The reduction probability is same as in standard quantum measurement theory.

    For option B) the reduction could occur also to any N-dimensional eigen-space or its sub-space. The idea would be that NMP allows something analogous to a choice between good and evil: the negentropy gain could in this case be also smaller than the maximal one corresponding to log(Nmax). This would conform with the intuition that we do not seem to live in best possible world. On the other hand, negentropy transfer between systems could be also seen as stealing in some situations and metabolism identified as negentropy transfer could be seen as the fundamental "crime" to which all other forms of reduce.

3. Could quantum measurement involve also adelic localization?

For option B) there is still one possible refinement involved. p-Adic mass calculations lead to the conclusion that elementary particles are characterized by p-adic primes and that p-adic length scale hypothesis p≈ 2k holds true: a more general form of hypothesis allows also to consider primes near powers qn of some small prime such as q=3.

Could state function reduction imply also adelic/cognitive localization in the sense that the negentropy is nonzero and positive for only single p-adic prime in the final state? The reduction would occur to pk-dimensional eigen-space with pk dividing N: any divisor would be allowed. Note that Hilbert spaces with prime dimension are prime with respect to the decomposition to tensor product so that reduction would select prime power factor of the eigen-space.

The information theoretic meaning would be that prime-dimensional Hilbert spaces are stable against decomposition to tensor products so that the notion of entanglement would not make sense and therefore also the change of the state by the reduction of entanglement would be impossible. I have considered the possibility that prime-dimensional state spaces could make possible stable storage of quantum information. The prime-dimensional state when imbedded to higher-dimensional space could be seen as an entangled state.

This hypothesis would provide considerable insights to the origin of p-adic length scale hypothesis. To get a contact with physics consider electron as an example.

  1. In the case of electron one would have p=M127=2127-1∼ 1038. Could electron decompose to two entangled subsystems with density matrix equal to p× p identity matrix? The dimension of eigen-space would be huge and electron would carry negentropy of 127 bits: also p-adic mass calculations combined with a generalization of Hawking-Bekenstein formula suggest that electron carries entropy of 127 bits: in adelic picture these views are mutually consistent.

    The recent view indeed is that all elementary particles correspond to closed monopole magnetic flux tubes with a shape of highly flattened rectangles with short sides identifiable as extremely short wormhole contacts (CP2 size) and long sides with length of order Compton length. Magnetic monopole flux traverses along first space-time sheet between wormhole throats, goes through wormhole contact, and returns back along second space-time sheet. Many-fermion states are assigned with the throats and are located at the ends of strings traversing along the flux tubes.

    Could this structure be in the case of electron a 127-sheeted structure such that the two wormhole contacts carry a superposition of pairs formed by states containing n ∈{1,...,127} fermions at second contact and n antifermions with opposite charges at second contact so that 2127-1 dimensional eigen-space would be obtained for a fermion with given spin and isospin. For instance, n=0 state with no fermion-pairs could be excluded.

  2. Right-handed neutrinos and antineutrinos are candidates for the generators of N=2 supersymmetry in TGD framework. It however seems that SUSY is not manifested at LHC energies, and one can wonder whether right-handed neutrinos might be realized in some other manner. Also the mathematics involved remains still somewhat unclear. For right-handed neutrinos, which are not covariantly constant transformation to left-handed neutrinos is possible and leads to the mixing and massivation of neutrinos. For covariantly constant right handed neutrino spinors this does not happen but they can included into the spectrum only if they have non-vanishing norm.

    This might be the case with a proper definition of norm with Ψbar pkγkΨ replaced by Ψbar; nkγkΨ: here nk defines normal of the light-like boundary of CD. Covariantly constant right-handed neutrinos have neither electro-weak, color, nor gravitational interactions so that their negentropic entanglement would be highly stable. Unfortunately, the situation is still unclear and this leaves open the idea that right-handed neutrinos might play fundamental role in cognition and negentropy storage. Amusingly, I proposed the notion of cognitive neutrino long time ago but based on arguments which turned out to be wrong.

    One could indeed consider the possibility that each sheet of the 127-sheeted structure contains at most one νR at the neutrino end of the flux tube accompanied by νbarR at anti-neutrino end. One would have a superposition p=2127-1 states formed by many-neutrino states and their CP conjugates at opposite "ends" of the flux tube. It is also possible that νbarRR pairs are spin singlets so that one has superposition over many-particle states formed from these analogous to coherent state.

    This is not the only possibility. The proposal for how the finite range of weak interactions emerges suggests a possible realization for how the number of states in superposition reduces from 2127 to 2127-1. The left weak isospin of fermion at wormhole throat is compensated by the opposite weak isospin of neutrino/antineutrino plus νbarRR or cancelling its fermion number: therefore weak charges vanish in scales longer than the flux tube length of order of the Compton length. The physical picture is that massless weak boson exchanges occur inside the flux tube which therefore defines the range of weak interactions. Same mechanism could be at work for both wormhole throat pairs and therefore also for fermion and anti-fermion at opposite wormhole throats defining building bricks of bosons. The state νbarRR would be excluded from the superposition of pairs of many-particle states and superposition would contain p=2127-1 states.

  3. Could this relate to heff=n× h hypothesis? It has been assumed that heff/h=n corresponds to space-time surfaces representable as n-fold singular coverings, whose sheets co-incide at the 3-D ends of the space-time surface at opposite boundaries of CD. There is of course no need to assume that the covering considered above corresponds to singular covering and the vision that only particles with same value of n appear in same vertices suggests that n=1 holds true for visible matter.

    One can still ask whether the elementary particle characterized by p ≈ 2k could corresponds to k-fold singular covering and to heff/h= k? This would require that phase transitions changing the value of k take place at the lines of scattering diagrams to guarantee that all particles have the same value of k in given vertex. These phase transitions are a key element of TGD inspired quantum biology.

    In the first order of perturbation theory this would not mean any deviations from standard quantum theory for given k and the general vision that loop corrections from the functional integration over WCW vanish suggests that there are no effects in perturbation theory for given k. p-Adic coupling constant evolution would be discrete and make itself visible by the phase transitions at the lines of scattering diagrams (not identifiable as Feynman diagrams). The different values of heff/h=n be also seen through non-perturbative effects assignable to the bound states and also via the proportionality of p-adic mass scales to p-1/2≈ 2-k/2 predicted by p-adic mass calculations.

See the chapter Non-locality in quantum theory, in biology and neuroscience, and in remote mental interactions: TGD perspective of "TGD Based View About Living Matter And Remote Mental Interactions" or article with the same title.

For a summary of earlier postings see Latest progress in TGD.

Thursday, June 30, 2016

Magnetic body, biophotons, and prediction of scaled variant of EEG


The model for quantum biology relying on the notions of MB and dark matter as hierarchy of phases with heff =nh, and biophotons identified as decay produces of dark photons. The assumption hgr ∝ m becomes highly predictable since cyclotron frequencies would be independent of the mass of the ion.

  1. If dark photons with cyclotron frequencies decay to biophotons, one can conclude that biophoton spectrum reflects the spectrum of endogenous magnetic field strengths. In the model of EEG it has been indeed assumed that this kind spectrum is there: the inspiration came from music metaphors suggesting that musical scales are realized in terms of values of magnetic field strength. The new quantum physics associated with gravitation would also become key part of quantum biophysics in TGD Universe.

  2. For the proposed value of hgr 1 Hz cyclotron frequency associated to DNA sequences would correspond to ordinary photon frequency f=3.6× 1014 Hz and energy 1.2 eV just at the lower limit of visible frequencies. For 10 Hz alpha band the energy would be 12 eV in UV. This plus the fact that molecular energies are in eV range suggests very simple realization of biochemical control by MB. Each ion has its own cyclotron frequency but same energy for the corresponding biophoton.

  3. Biophoton with a given energy would activate transitions in specific bio-molecules or atoms: ionization energies for atoms except hydrogen have lower bound about 5 eV (see this ). The energies of molecular bonds are in the range 2-10 eV (see this ). If one replaces v0 with 2v0 in the estimate, DNA corresponds to .62 eV photon with energy of order metabolic energy currency and alpha band corresponds to 6 eV energy in the molecular region and also in the region of ionization energies.

    Each ion at its specific magnetic flux tubes with characteristic palette of magnetic field strengths would resonantly excite some set of biomolecules.This conforms with the earlier vision about dark photon frequencies as passwords.

    It could be also that biologically important ions take care of their ionization self. This would be achieved if the magnetic field strength associated with their flux tubes is such that dark cyclotron energy equals to ionization energy. EEG bands labelled by magnetic field strengths could reflect ionization energies for these ions.

It must be made clear that TGD has had an interpretational problem related to the identification of biophotons as decay product of dark protons. The resolution of this problem leads to conclusion that both Earth's and galactic MBs control living matter with EEG related by scaling. This would be rather dramatic realization of non-locality.

The problem is following. If one wants bio-photon spectrum to be in visible-UV range assuming that bio-photons correspond to cyclotron photons, one must reduce the value of r=hgrBend/mv0 for Earth particle system by a factor of order k=2× 10-4. r does not depend on the mass of the charged particle. One can replace Bend with some other magnetic field having value which is considerably smaller. One can also increase the value of v0.

  1. For hgr determined by Earth's mass and v0=vrot, where vrot≈ 1.55× 10-6c is the rotation velocity of Earth around its axis and for Bend→ Bgal= 1 nT, where Bgal is typical strength of galactic magnetic field, the energy of dark cyclotron energy is 45 eV (UV extends to 124 eV). This is roughly by a factor 50 higher than the lower bound for the range of bio-photon energies. One possibility is that Bgal defines the upper limit of the dark photon energies and has variation range of at least 7 octaves with lower limit roughly 1/50 nT.

    One can also consider the possibility Bgal defines lower bound for the magnetic field strengths involved and one has v0>vrot. For sun the rotation velocity at Equator is vrot= 2× 10-5 m/s and v0 is v0≈ 5.8× 10-4c. One has v0/vrot≈ 29.0. If same is true in case of Earth, the value of the energy comes down from 25 eV to 1.6 eV which corresponds to visible wave length.

    The assignment of Bgal to gravitational flux tubes is very natural. Now however the frequencies of dark variants of bio-photons would not be in EEG range: 10 Hz frequency would correspond to 5× -4 Hz with period of 42 min. The time scale of 42 min is however very natural concerning consciousness and could be involved with longer bio-rhythms. Scaled EEG spectrum with alpha band around 46 min naturally assignable to diurnal sub-rhythms could be a testable prediction. Natural time would be sidereal (galactic) time with slightly different length of day and this allows a clear test. Recall the mysterious looking finding of Spottiswoode that precognition seems to be enhanced at certain time of sidereal day. Cyclotron frequency 1 Hz would correspond to 7 hours. One can ask whether 12 hours (25) is the natural counterpart for the cyclotron frequency 1 Hz assignable to DNA. This would correspond to lower bound Bgal→ 7Bgal/12 ≈ .58 nT or to v0→ 1.7v0.

  2. The idea has been that it is dark EEG photons, which correspond to bio-photons. Could one assign bio-photons also to dark EEG so that magnetic fields of Earth and galaxy would correspond to two different control levels? If Bend=.2 Gauss is assumed to determine the scale of the magnetic field associated with the flux tubes carrying gravitational flux tubes, one must reduce hgr. The reduction could be due to M→ MD=kM and due to the change of v0. k could characterize the dark matter portion of Earth but this assumption is not necessary.

    This would require k=Mdark, E/ME≈ 5× 10-5 if one does not change the value of v0. This value of k equals to the ratio of Bgal/Bend and would be 1/4:th of k=2× 10-4. One might argue that it is indeed dark matter to which the gravitational flux tubes with large value of Planck constant connect biomatter.

  3. Suppose that one does not give up the idea that also Earth mass gives rise to hgr and scaled analog of EEG. Then MD must correspond to some mass distinguishable from and thus outside Earth. The simplest hypothesis is that a spherical layer around Earth is in question. TGD based model for spherical objects indeed predict layered structures. There are two separate anomalies in the solar system supporting the existence of a spherical layer consisting of dark mass and with radius equal to the distance of Moon from Earth equal to 60.3 Earth radii. The first anomaly is so called Flyby anomaly and second one involves a periodic variation of both the value of the measured Newton's constant at the surface of Earth and of the length of the day. The period is about 6 years and TGD predicts it correctly.

    One can imagine that dark particles reside at the flux tubes connecting diametrically opposite points of the spherical layer. Particles would experience the sum of gravitational forces summing up to zero in the center of Earth. Although the layer would be almost invisible (or completely invisible by argument utilizing the analogy with conducting shell) gravitationally in its interior, hgr=MDm/v0 would make itself visible in the dynamics of dark particles! This layer could represent magnetic Mother Gaia and EEG would take care of communications to this layer.

    The rotation velocity vrot,M≈ 2.1× vrot,E of Moon around its axis is the first guess for the parameter v0 identifiable perhaps as rotation velocity of the spherical layer. A better guess is that the ratio r=v0/vrot,M is the same as for Sun and as assumed above for Earth. This would give for the ratio of cyclotron frequency scales r= (Bend/Bgal)× 2.1. 66.7 min, which corresponds to Bgal= .63 nT, would correspond to .1 s. For this choice 1 Hz DNA cyclotron frequency would correspond 11.7 h rather near to 12 h. This encourages the hypothesis that 72 min is the counterpart of .1 s cyclotron time. The cyclotron time of DNA (very weakly dependent on the length of DNA double strand) in Bgal (or its minimum value) would be 12 h.

Magnetic body of Earth controlling bio-dynamics would be a dramatic manifestation of non-locality to say nothing about the control performed by galactic magnetic body. MD would be associated with the magnetic Mother Gaia making life possible at Earth together with magnetic Mother Galactica. Both MBs would be in continual contact with biomolecules like ATP and the molecules for which ATP attaches or provides the phospate. Metabolic energy would be used to this process. These MBs would be Goddesses directing its attention to tiny bio-molecules. If this picture is correct, the ideas about consciousness independent on material substrate and assignable to a running computer program can be safely forgotten.

See the new chapter Non-locality in quantum theory, in biology and neuroscience, and in remote mental interactions: TGD perspective or article with the same title.

For a summary of earlier postings see Latest progress in TGD.

Further pieces of evidence for the notion of magnetic body

Evidence for the notion of magnetic body (MB) is accumulating. For instance, the recently observed synchrony between hemispheres in absence of corpus callosum (see this) could be understood in terms of MB serving as a "boss" and forcing the two disconnected hemispheres to march in same pace.

Today I learned that humans seem to have sixth sense: kind of sub-conscious magnetic sense of directions (see this) possessed by many animals lower in the evolutionary tree - in particular birds and fishes and also many mammals. There is evidence that also humans but not all of us and not always - seem to respond to magnetic field.

The name of geophysisicist Joe Kirschwink working at CalTech as professor of geobiology iwas already familiar to me. For instance, Kirscwink has introduced the term "snowball Earth". Kirscwink claims that he has proven that also humans have magnetic sense serving as a kind of compass. The experiment involves a slowly rotating constant magnetic field with strength between .25-.6 Gauss (Earth's magnetic field has nominal value of .5 Gauss and the "endogenous" magnetic field appearing in TGD inspired quantum biology has value about .2 Gauss). The field is created by coils located at the walls of a cube so that its direction is under control and it can be also cancelled. The subject person sits in the middle of a Faraday cage eliminating electromagnetic perturbations from environment. EEG of subject person is measured. The explanation for why the earlier experiments often failed is that external perturbations cancelled the effect.

What was found that when the applied field rotates counterclockwise there is a response: the intensity in EEG alpha band drops down. The response however appears few hundred milliseconds later than one would expect if the response is passive response due to the electric currents induced by the applied field in brain. The signal appeared for up-down direction and counter-clockwise rotation but not the opposite. It also appeared when the direction of the field "yawed into the floor". I take "yaw" to mean the orientation angle of magnetic field with respect to the vertical axis.

A slow counterclock-wise rotation of the applied field was necessary. The period of this rotation was not mentioned. The rotation of the applied field could have mimicked the effect produced by the rotation of head with respect to the magnetic field of Earth in good approximation non-rotating in the inertial frame of person. In TGD framework one can ask whether parity breaking effect in macroscopic length scales is involved. What comes in mind is the rotation of the water going down to drain taking always in clocwise direction. Magnetic field obeys same equation as incompressible hydrodyamic flow. Could it be that the magnetic field associated with magnetite sensors in magnetic receptor neurons rotates in clockwise direction much like water going into drain and the response is maximal when the rotation directions are opposite?

One can probably invent purely neuroscientific explanations for the time lag of few hundred milliseconds for EEG response (EEG consists of quasistationary pieces of duration about .3 seconds possibly identifiable as correlates of mental images). In TGD framework the lag could be understood as being due to the fact that the percept is communicated to MB responding by reducing the alpha wave responsible synchronization of the brain. This response could be kind of wake-up from synchrony.

A further piece of evidence for MB comes from NASA (see this). MIT scientists have found what the article calls mysterious "invisible" force field protecting planet's atmosphere by preventing cosmic ray radiation entering to the lower atsmosphere. The field was first noticed by two NASA spacecrafts orbiting in van Allen radiation belt at height of 11,000 km (Earth radius is 6,371 km). The field blocks highly radioactive higher energy electrons. These electrons are attracted towards Earth by the magnetic field of Earth but cannot approach planet closer than 13,300 km - slightly more than twice the Earth radius.

Low frequency electromagnetic fields are involved as with dark matter at magnetic bodies. My guess is that the guardian angel is the magnetic body of Earth carrying dark matter to which one can assign magnetic field strength of .2 Gauss (2/5 of the nominal value of the Earth's magnetic field): actually entire spectrum of values is expected. The flux tubes or sheets carry dark matter and it could absorb the cosmic rays and tame them to Bose-Einstein condensates. For large heff=n× h the high energy E of cosmic ray corresponds to very low frequency f= E/heff and very long wavelength of order Earth size scale. Ordinary cosmic ray would be transformed to dark cosmic ray with very long wave length. The effect of ordinary cosmic ray is in scale of wavelength and highly local and disastreous for biomolecules like DNA. Now the affect would be absent. Dark magnetic body would act like mattress.

For a summary of earlier postings see Latest progress in TGD.

Friday, June 24, 2016

Comparing TGD view about quantum biology with McFadden's views

McFadden has very original view about quantum biology: I have written about his work for the first time for years ago, much before the emergence of ZEO, of the recent view about self as generalized Zeno effect, and of the understanding the role of magnetic body containing dark matter (see this). The pleasant surprise was that I now understand McFadden's views much better from TGD viewpoint.

  1. McFadden sees decoherence as crucial in biological evolution: here TGD view is diametric opposite although decoherence is a basic phenomenon also in TGD.

  2. McFadden assumes quantum superpositions of different DNAs. To me this looks an unrealistic assumption in the framework of PEO. In ZEO it is quite possible option.

  3. McFadden emphasizes the importance of Zeno effect (in PEO). In TGD the ZEO variant of Zeno effect is central for TGD inspired theory of consciousness and quantum biology. Mc Fadden suggests that quantum effects and Zeno effect are central in bio-catalysis: the repeated measurement keeping reactants in the same position can lead to an increase of reaction rate by factors of order billion. McFadden describe enzymes as quantum mousetraps catching the reactants and forcing them to stay in same position. The above description for how catalysis catches the reactants using U-shaped flux tube conforms with mousetrap picture.

    McFadden discusses the action of enzymes in a nice manner and his view conforms with TGD view. In ZEO the system formed by catalyst plus reactants could be described as a negentropically entangled sub-self, and self indeed corresponds to a generalized Zeno effect. The reactions can proceed in shorter scales although the situation is fixed in longer scales (hierarchy of CDs): this would increase the length of the period of time during which reactions can proceed and lead to catalytic effect. Zeno effect in ZEO plus hierarchies of selves and CDs would be essentially for the local aspects of enzyme action.

  4. Protons associated with hydrogen bonds and electronic Cooper pairs play a universal role in McFadden's view and the localization of proton in quantum measurement of its position to hydrogen bond is the key step of enzyme catalysis. Also TGD dark protons at magnetic flux tubes giving rise to dark nuclear strings play a key role. For instance, McFadden models enzyme catalysis as injection of proton to a very special hydrogen bond of substrate. In TGD one has dark protons at magnetic flux tubes and their injection to a properly chosen hydrogen bond and transformation to ordinary proton is crucial for the catalysis. Typical places for reactions to occur are C=O type bonds, where the transition to C-OH can occur and would involve transformation of dark proton to ordinary proton. The transformation of dark proton to ordinary one or vice versa in hydrogen bonds would serve as a biological quantum switch allowing magnetic body to control biochemistry very effectively.

    What about electronic Cooper pairs assumed also by McFadden? They would flow along the flux tube pairs. Can Cooper pairs of electrons and dark protons reside at same flux tubes? In principle this is possible although I have considered the possibility that particles with different masses (cyclotron frequencies) reside at different flux tubes. For hgr =heff this would make possible both frequency and energy resonance for cyclotron transitions.

McFadden has proposed quantum superposition for ordinary codons: This does not seem to make sense in PEO since the chemistries of codons are different) but could make sense in ZEO. In TGD one could indeed imagine quantum entanglement (necessary negentropic in p-adic degrees of freedom) between dark codons. This NE could be either between additional degrees of freedom or between spin degrees of freedom determining the dark codons. In the latter case complete correlation between dark and ordinary DNA codons would imply also the superposition of their tensor products with ordinary codons.

The NE between dark codons could also have a useful function: it could determine physically gene as a union of disjoint mutually entangled portions of DNA. Genes are known to be highly dynamical units, and after pre-transcription splicing selects the portions of the transcript translated to protein. The codons in the complement of the real transcript are called introns and are spliced out from mRNA after the pre-transcription (see this).

What could be the physical criterion telling whether a given codon belongs to exonic or intronic portion of DNA? A possible criterion distinguish between exons and introns is that exons have NE between themselves and introns have no entanglement with exons (also exons could have NE between themselves). Introns would not be useless trash since the division into exonic and exonic region would be dynamical. The interpretation in terms of TGD inspired theory of consciousness is that exons correspond to single self.

An updated nuclear string variant is summarized and also its connection with the model of harmony is discussed in chapter Three new physics realizations of the genetic code and the role of dark matter in bio-systems and in the article About physical representations of genetic code in terms of dark nuclear strings.

For a summary of earlier postings see Latest progress in TGD.

What about quantum entanglement between codons?

One could also imagine quantum entanglement (necessary negentropic in p-adic degrees of freedom) between codons. This NE could be between additional degrees of freedom or between spin degrees of freedom determining the codons. In the latter case complete correlation between dark and ordinary DNA codons would imply superposition of their tensor products too. This does not seem to make sense in PEO since the chemistries of codons are different) but could make sense in ZEO. McFadden has actually proposed this kind of quantum superposition for ordinary codons: I have compared this vision with TGD views as they were for years ago (see this). Now these views are somewhat out-of-date .

The NE between dark codons could also have a useful function: it could determine physically gene as a union of disjoint mutually entangled portions of DNA. Genes are known to be highly dynamical units, and after pre-transcription splicing selects the portions of the transcript translated to protein. The codons in the complement of the real transcript are called introns and are spliced out from mRNA after the pre-transcription (see this).

What could be the physical criterion telling whether a given codon belongs to exonic or intronic portion of DNA? A possible criterion distinguish between exons and introns is that exons have NE between themselves and introns have no entanglement with exons (also exons could have NE between themselves). Introns would not be useless trash since the division into exonic and exonic region would be dynamical(one can imagine also other reasons for them not being trash). The interpretation in terms of TGD inspired theory of consciousness would be that exons correspond to single self.

An updated nuclear string variant is summarized and also its connection with the model of harmony is discussed in
chapter Three new physics realizations of the genetic code and the role of dark matter in bio-systems and in the article About physical representations of genetic code in terms of dark nuclear strings.

For a summary of earlier postings see Latest progress in TGD.