Thursday, November 20, 2014

How visual percepts are constructed?

How does visual system analyze the incoming visual information and reconstruct from it a (highly artistic) picture of the external world? I encountered this problem for the first time for about 35 years ago while listening some lecture about what happens in retina. I was working with my thesis as an unemployed in a job with the purpose to make me capable of getting a job in a real world (as a person suffering from a tendency to use my brains to thinking I was (and still am) labelled as a kind of socially handicapped person: in former Soviet Union I would have been labelled as a paranoid). The job itself was a purely formal duty and I was allowed to prepare my thesis rather freely (this would not be possible nowadays). I had also opportunity to listen lectures and this particular lecture series about neuroscience by Kari Kaila has teased me since then.

In the visual cortex there are so called orientation columns. They are sensitive to lines of the visual field in a specific direction. This sounded very strange to me. Why not divide visual field to small cycles or squares and be sensitive to the light in a particular square defining the bit? I learned that there are also simple and complex cells. Simple cells are sensitive to a particular line. Complex cells are sensitive to all lines with same direction.

I was also told that ganglions in retina have receptive fields. There are ganglions with on-center and off-center receptive fields. There is also a saccadic motion which is essential for visual consciousness: if it is prevented, subject persons first begins to see just darkness and eventually the visual consciousness fades away.

How to integrate these pieces to a coherent picture? During morning hours this problem popped up in my mind and I got some ideas and decided to check from Wikipedia what is known. I of course thought that this whole thing has been well-understood for decades and maybe it is! If so, I am making myself a fool: it does not however matter much at this age! I found an article about orientation columns containing a brief mention about a model for how the orientation map is constructed.

So called Moire interference of identical or nearly identical patters rotated with respect to each other by an angle produces a non-localized representation of a definite orientation. By putting the visual representation associated with approximately hexagonal lattices formed by on-centre and off-centre ganglions, one would obtain a representation of orientation somehow. I must be honest: I did not understand the idea at all! There was a reference to an article in Nature: Paik, S., Ringach, D. L. (2011): Retinal origin of orientation maps in the visual cortex. Nature Neuroscience, 14(7), 919-925. I do not have access to this article so that I can continue making naive questions and stupid arguments.

  1. What are the simplest possible visual representations of the external world? Drawings of course. Painters make first a a sketch. We have cartoons. Visualizations are typically 2-D drawings. It would not be surprising if visual system would not obey the same strategy. In finite resolution they consist of pieces of lines forming what looks like continuous structures when the length of basic piece is short enough as anyone who has used drawing programs knows. Maybe brain and retina first build this kind of representation and add colours and other details later.

  2. Could ganglia or possible linear structures formed from them effectively see through slits? They would be specialized to detect the presence of this kind of lines of some minimal length defining the resolution and going through through the centre of retina. When the line is parallel to the slit associated with the detector, the line detector sends nerve pulses to brain.

  3. There is a problem. If the orientation of eye remains fixed, the line detector sees only the lines going through the normal of the retina at its centre and usually sees nothing. Most of visual field would remain unseen.

    Saccadic motion saves the situation. When the normal of the line detector intersects the line of visual field with a proper orientation, it detects a line. For a given light intensity the input is maximal if the line is longer than the maximal length of line source for which detector is sensitive. The total intensity of incoming light through the slit is enough to build the representation. The output is bit telling whether a piece of line is there or not.

  4. These inputs from slit detectors would be the basic inputs fed to the complex cells forming representations of the lines. In visual cortex the information from the orientation of retina combined with the bits produced by slit detectors during a saccadic motion lasting so long a period that large enough number of orientations of normal are scanned, are combined to a drawing.

    T= .1 seconds is the croon of time for sensory percepts. and is the natural guess for this period of integration. The maximal angular speed of saccadic motion is for humans about 900 degrees/second making 90 degrees per time interval T (see this).

    Certainly there must exist a feedback from brain favoring preferred saccades using already existing information about the distribution of lines so that for targets which are stationary saccades would go along the lines of the already existing picture and detect if changes have occurred.

  5. If the object remains in good approximation at rest during this period, a drawing about the external world is obtained as an outcome. The simplest guess is that orientation column at particular point of visual cortex corresponds to a point in the visual field and if there is line of defined direction going through that point of visual field, simple cell sensitive to that orientation receives input.

  6. Could ganglia themselves see the world through a slit? One can argue that if this were the case, it would have been observed experimentally. I tend to agree. One can of course ask whether saccadic motion necessary for visual consciousness effective blurs the visual field of the ganglion so that it is disk of radius defined by the maximal length of line for which ganglion is sensitive.

    The simplest and probably the correct assumption is that ganglia indeed detect spots of light or absence of it. Line detectors would correspond to lines formed by ganglia or perhaps similar structures at higher levels of the neural hierarchy.

    Since I love magnetic flux tubes, I cannot resist the temptation to connect the ganglia by flux tubes to form these lines so that one would have a grid lines of ganglia analogous to a the radial lines of a coordinate grid of cylindrical coordinates with origin at the centre of retina. Peripheral regions would correspond to a poorer resolution if this is the case. Maybe macroscopic quantum coherence would enter the stage here and allow to bind the percepts about spots to a percept about line.

Of, course this idea is just a first guess reflecting my deep ignorance about how visual representations are formed, and certainly the details, if not the whole idea, are wrong.

3 Comments:

At 6:49 PM, Blogger L. Edgar Otto said...

Matti,

Brilliant! This will prove to be one of your more significant papers.

A single retina nerve is equal to a 286 computer... thus a supercomputer is replaced every seven days. How much more so the whole brain?

I keep thinking of Esquimo's wearing wooden glasses with slits to ease the white snow glare. (for a poem perhaps)... It is after all an analogy to the quantum double slit question.

Lately, I see tests that drawing in biochemistry speeds the learning to students and now they wonder why.

So many I am in contact recently on line seem to be trying to analyze space and time by simple drawing programs.

I have reason to think after viewing a video on the amplitudohedron that the core of many others and our speculations are proven sound - even though that to me is just an alternative theory in fact little is there more than the arithmetic.

Yet your deeper intuitions I would not call a similar numerology. We see with our minds and the physics of it is dark and deep. Cheers

oh, I do not see posts all there or in time having to switch between the smart phone and the pc. But then I did not design a simple common sense system which is not so narrow.

 
At 10:14 PM, Anonymous Anonymous said...

http://m.phys.org/news/2014-12-human-eye-invisible-infrared.html

I knew it, I get those damn green blotches sometimes too!

 
At 7:34 PM, Anonymous Anonymous said...

http://m.phys.org/news/2014-12-decoding-blue-mysterious-ability-body.html

 

Post a Comment

<< Home