Tuesday, February 19, 2008

Quantum model of nerve pulse V: Summary

Quite recently I learned [1,2,3,4,5] (thanks to Ulla Mattfolk) that nerve pulse propagation seems to be an adiabatic process and thus does not dissipate: the authors propose that 2-D acoustic soliton is in question. Adiabaticity is what one expects if the ionic currents are dark currents (large hbar and low dissipation) or even supra currents. Furthermore, Josephson currents are oscillatory so that no pumping is needed. Combining this input with the model of DNA as topological quantum computer (tqc) [8] leads to a rather precise model for the generation of nerve pulse. The following gives a brief summary of main points of the model in its recent form.

  1. The system would consist of two superconductors- microtubule space-time sheet and the space-time sheet in cell exterior- connected by Josephson junctions represented by magnetic flux tubes defining also braiding in the model of tqc. The phase difference between two super-conductors would obey Sine-Gordon equation allowing both standing and propagating solitonic solutions. A sequence of rotating gravitational penduli coupled to each other would be the mechanical analog for the system. Soliton sequences having as a mechanical analog penduli rotating with constant velocity but with a constant phase difference between them would generate moving kHz synchronous oscillation. Periodic boundary conditions at the ends of the axon rather than chemistry determine the propagation velocities of kHz waves and kHz synchrony is an automatic consequence since the times taken by the pulses to travel along the axon are multiples of same time unit. Also moving oscillations in EEG range can be considered and would require larger value of Planck constant in accordance with vision about evolution as gradual increase of Planck constant.

  2. During nerve pulse one pendulum would be kicked so that it would start to oscillate instead of rotating and this oscillation pattern would move with the velocity of kHz soliton sequence. The velocity of kHz wave and nerve pulse is fixed by periodic boundary conditions at the ends of the axon implying that the time spent by the nerve pulse in traveling along axon is always a multiple of the same unit: this implies kHz synchrony. The model predicts the value of Planck constant for the magnetic flux tubes associated with Josephson junctions and the predicted force caused by the ionic Josephson currents is of correct order of magnitude for reasonable values of the densities of ions. The model predicts kHz em radiation as Josephson radiation generated by moving soliton sequences. EEG would also correspond to Josephson radiation: it could be generated either by moving or standing soliton sequences (latter are naturally assignable to neuronal cell bodies for which hbar should be correspondingly larger): synchrony is predicted also now.

  3. The previous view about microtubules in nerve pulse conduction can be sharpened. Microtubular electric field (always in the same direction) could explain why kHz and EEG waves and nerve pulse propagate always in same direction and might also feed energy to system so that solitonic velocity could be interpreted as drift velocity. This also inspires a generalization of the model of DNA as topological quantum computer [7] since also microtubule-cell membrane systems are good candidates for performers of tqc. Cell replication during which DNA is out of game seems to require this and microtubule-cell membrane tqc would represent higher level tqc distinguishing between multi-cellulars and mono-cellulars.

  4. New physics would enter in several manners. Ions should form Bose-Einstein cyclotron condensates. The new nuclear physics predicted by TGD [8] predicts that ordinary fermionic ions (such as K+, Na+, Cl-) have bosonic chemical equivalents with slightly differing mass number. Anomalies of nuclear physics and cold fusion provide experimental support for the predicted new nuclear physics. Electronic supra current pulse from microtubules could induce the kick of pendulum inducing nerve pulse and induce a small heating and expansion of the axon. The return flux of ionic Josephson currents would induce convective cooling of the axonal membrane. A small transfer of small positive charge into the inner lipid layer could induce electronic supra current by attractive Coulomb interaction. The exchange of exotic W bosons which are scaled up variants of ordinary W+/- bosons is a natural manner to achieve this if new nuclear physics is indeed present. There are a lot of support for this new physics: cold fusion and nuclear transmutations in living matter [8] ( these I have discussed in previous postings).

For background see that chapter Quantum Model of Nerve Pulse of "TGD and EEG".


[1] Soliton model.

[2] T. Heimburg and A. D. Jackson (2005), On soliton propagation in biomembranes and nerves, PNAS vol. 102, no. 28, p.9790-9795.

[3] T. Heimburg and A. D. Jackson (2005), On the action potential as a propagating density pulse and the role of anesthetics, arXiv : physics/0610117 [physics.bio-ph].

[4] K. Graesboll (2006), Function of Nerves-Action of Anesthetics, Gamma 143, An elementary Introduction.

[5] Physicists challenge notion of electric nerve impulses; say sound more likely.

[6] Saltation.

[7] The chapter DNA as Topological Quantum Computer of "Genes and Memes".

[8] The chapter Nuclear String Physics of "p-Adic Length Scale Hypothesis and Dark Matter Hierarchy".


Post a Comment

<< Home