Thursday, November 16, 2017

More about life-like properties found in very simple system

As I told in the previous posting, I encountered in FB a link to a rather interesting article by physicists working in Emory University. The title of the popular article was " Physicists show how lifeless particles can become 'life-like' by switching behaviors" (see this). The article " Emergent bi-stability and Switching in a Nonequilibrium Crystal by Guram Gogia and Justin Burton is published in PRL and can be found in ArXiv (see this). Justin Burton leads a physics group working at Emory University. Guram Gogia who made the discovery is her student.

The development of TGD inspired model for the finding led to a dramatic progress in the TGD inspired models for biocontrol and prebiotic evolution so that an extended version of the earlier posting is in order.

The physicists working in Emory University have made very interesting discovery. The very simple system studied exhibits what authors call self-organized bi-stability making phase transitions between crystal-like and gas-like phases. The expectation was that only single stable state would appear. Neuron groups can also have collective bi-stability (periodic synchronous firing). Neurons are however themselves bi-stable systems: now the particles are plastic balls and are not bi-stable. One could say that the system exhibits life-like properties. The most remarkable life-like property is metabolism required by the sequence of phase transitions involving dissipation.

Where does the metabolic energy come from? The proposal that stochastic resonance feeds the needed metabolic energy leaves open its source. The resemblance with living cells suggests that the attempt to interpret the findings solely in terms of non-equilibrium thermodynamics might miss something essential - the metabolism.

TGD provides a general model for living systems relying on the notion of magnetic body (MB), hierarchy of Planck constants heff=n× h labelling phases of ordinary matter identifiable as dark matter, and the realization of control and communication signals between MB and biological body using dark photons. Bio-photons would result in the transformation of dark photons to ordinary photons and EEG would rely on dark cyclotron photons and generalized Josephson photons from cell membrane (also bio-photons would relate to them). Bose Einstein condensates of dark variants of biologically important ions or their Cooper pairs are also in a central role. The assumption hgr=heff, where hgr is so called gravitational Planck constant, implies that the energy spectrum of dark cyclotron photons is universal (no dependence on the mass of ion) and naturally in visible and UV range characterizing molecular transition energies.

One can develop a detailed TGD inspired model for the findings leading to an identification of new control tools of MB (MB). Quantum criticality makes it possible for MB can adapt to the biological body (BB) so that it can generated cyclotron frequencies, which correspond to the characteristic frequencies of BB: forced oscillations serve as a control tool of MB. Also the analogs of Alfwen waves identifiable as analogs of string vibrations allow to control the systems at the nodes of the flux tube network.

In the system studied the crystal-like phase corresponds to a connected flux tube network associated having plastic balls as nodes, and gas-like phase to a totally disconnected network with connecting flux tube pairs split into flux loops. That freezing would require energy (going to the magnetic energy of flux tube network in heff increasing phase transition) does not conform with the thermodynamics of classical systems. That superfluid Helium has similar strange feature at low enough temperatures suggests that the system is indeed quantal. Cyclotron Bose-Einstein (BE) condensates of Cooper pairs of Ar+ ions, protons, and electrons are proposed to be relevant. Encouragingly, the ratio of frequencies for horizontal and vertical oscillations frequencies of crystal-like structure is equal to the ratio of cyclotron frequencies for Ar+ and proton.

One of the key challenges is to identify the the prebiotic source of metabolic energy. The sequences of dark protons identifiable as dark nuclei give in TGD framework rise to analogs of DNA, RNA, tRNA, and amino-acids. The model predicts the degeneracies of vertebrate genetic code correctly. In TGD based model for "cold fusion" as dark nucleosynthesis (DNS) serving as a predecessor of ordinary nucleosynthesis dark nuclei transform to ordinary nuclei liberating almost all nuclear binding energy. Dark analogs of DNA, RNA, tRNA, and amino-acids would therefore provide also the sought for prebiotic source of metabolic energy in the system studied: the egg-or-hen problem about whether the genes or metabolism came first, would be resolved.

See the updated article Life-like properties observed in a very simple system or the chapter of "TGD based view about living matter and remote mental interactions" with the same title.

For a summary of earlier postings see Latest progress in TGD.

Articles and other material related to TGD.

1 comment:

Anonymous said...