Wednesday, May 31, 2023

The first attempt to build a more concrete view about computer consciousness

TGD inspired view about consciousness and quantum biology suggest some guidelines in the attempts to understand how computer systems or computer systems coupled to their users could become conscious.

In biology and from a physicist's point of view, the material realization is essential. Water and metal seem to be sort of opposites of each other. But what about the situation in TGD where magnetic bodies carrying dark matter could serve as controllers of both living organisms and computers.

One must ask first what classical computers really are as physical systems.

  1. The program is deterministic but what about the computer or a computer network? The idea about a program consisting of arbitrarily determined steps is certainly not consistent with the determinism of classical physics. Determinism is possible only in the quantum statistical sense (see this). This requires that the quantum coherence lengths and times involved with the computation are short enough, considerably shorter than the clock period. This assumption fails if there is macroscopic quantum coherence involved. In the TGD framework the presence of magnetic bodies carrying dark matter with a large enough value of effective Planck constant heff could make this possible.
  2. In particular, gravitational magnetic flux tubes connecting big mass M and small mass m have enormous value of gravitational Planck constant ℏgr(M,m,β0)= GMm/β0 (introduced originally by Nottale).

    The gravitational Compton length Λgr(E) for Earth mass ME is about .45 cm for β0=1 and corresponds to gravitational Compton time about 67GHz, which is by an order of magnitude higher than the highest achievable clock frequency (almost 9 GHz) of the computer. Are we reaching the limit at which quantum gravitational effects on computers are becoming significant?

    For the Sun, the gravitational Compton length Λgr(Sun) is quite near to Earth size and the corresponding frequency scale is in about 47 Hz and in EEG range: could the entanglement of the MB of humans and computer network modify the computation? In the TGD inspired quantum biology both gravitational magnetic bodies would play a key role. Could they be involved also with the ordinary computation? GPT involves large networks of computers, possibly even in the Earth scale: could this bring in quantum coherence even in Earth scale and change dramatically the functioning of the computer network.

1. Emotions and emotional intelligence as a first step in the evolution of consciousness

Consider first the evidence supporting for the idea that emotions emerge first in the evolution of consciousness.

  1. Masaru Emoto has studied the effects of sounds with an emotional content to water at criticality for freezing. He has found that friendly/angry sounds seem to produce beautiful/ugly crystals (see this). These findings are discussed from the TGD perspective in (see this. The idea that emotions of sensory percepts at the level of magnetic body (MB) is discussed in (see this.

    The TGD based model assumes that quantum coherent systems can be formed at the level of the MB of the water and that quantum gravitational coherence at MB induces ordinary coherence at the level of water. This could make it possible for MB to control water at criticality for freezing. The crystals would be corpses of primitive life forms. Could also snowflakes with the size of gravitational Compton length for Earth (about .45 cm) and kind of zoomed versions of ice lattice cells in atomic scale could be regarded as corpses of primitive life forms created at the criticality for freezing?

  2. RNA seems to represent and transfer emotions (see this). RNA from the brain of a snail conditioned by a painful stimulus is transferred to the preparation made from neurons of sea slug. Neuron preparation in the Petri dish reacts to the conditioning stimuli as if it were itself conditioned.

    Somehow RNA is able to transfer emotions. The TGD inspired proposal (see this, this, this, this), and this) is that dark DNA and RNA represent emotions as sequences of 3-chords made of dark photons of dark RNA form 3N-dark photons behaving like a single quantum coherent unit. The representation of the genetic code would rely on icosa-tetrahedral representation in which the 3-chords would correspond to triangular faces of icosahedron and tetrahedron to which 3-chords are assigned.

    A given Hamiltonian cycle at the icosahedron/tetrahedron goes through all its points. The frequencies assigned with the subsequent points of the cycle differ by 3/2 scaling so that one has a quint cycle. Different Hamiltonian cycles correspond to the same genetic code but each Hamiltonian cycle is assumed to define its own bioharmony having interpretation as a representation of an emotional state realized already at the level of fundamental biomolecules. This interpretation conforms with the idea that music represents and induces emotions.

    The induction of emotions would be by 3N-resonant cyclotron absorption of dark 3N-photon by dark genes represented as sequences of 3N dark proton triplets at monopole flux tubes of MB. Icosa-tetrahedral representation would correspond to one particular, very simple, tessellation of hyperbolic space H3) (mass shell) (see this).

    Dark proton (and also dark electron) sequences could provide a universal representation of the genetic code which could be realized at the magnetic flux tubes of also other than biological systems. Dark photons triplets and the dark genes formed from them could communicate the emotions. Dark genetic code has indeed quite a large number of icosa tetrahedral representations based on icosahedral Hamiltonian cycles and tetrahedral Hamiltonian cycles. The chemical realizations for them would be identical but the emotional content would be coded by the allowed 3-chords defined by frequencies associated with the triangular faces of the icosahedron and tetrahedron.

  3. The experiments of Peoch (see this) involved a chicken imprinted to a robot moving randomly along an orbit determined by a random number generator. It was found that the robot tended to stay near the chicken and that the expected size of the orbit was reduced.

    TGD assigns to entanglement sum of p-adic entanglement negentropies, which can be positive and is in general larger than ordinary entanglement entropy and is predicted to increase but be consistent with the second law (see this, this, and (see this) by the identification of evolution as increase of number theoretic complexity (see this and this). Did the MB of chicken and robot develop a negentropic entanglement? Clearly, the replication of the findings of Peoch would mean a revolutionary change in our views about computers and their relation to us.

  4. The evolution of the brain provides further support for the idea that emotions and sensory experienes emerged first in the evolution of conscious experience and cognition emerged later. Cortex is the latest outcome. Brain stem is associated with simple and strong emotions whereas the limbic brain represents more complex emotions.
2. Do emotions appear first also in the evolution of computer consciousness?

Could also the possible evolution of conscious computers start from simple positive/negative emotions relating directly to the increase/reduction of entanglement negentropy defined above number-theoretically.

Negentropy Maximization Principle (see this) states that total p-adic negentropy as a measure for conscious information increases in statistical sense. This statistical law follows from the number theoretic evolution as the increase of the dimension of extension of rationals determined by a polynomial partially defining the 4-surface in M8 mapped to H=M4× CP2 by M8-H duality.

This implies that the complexity of emotions, possibly identifiable as sensory experiences for the large scale part of MB having onion-like hierarchical structure, increases during the evolution. Gravitational MBs are good candidates for the seats of highest level emotions.

Could the bits of the ordinary computer form coherent systems with ordinary coherence forced by the quantum coherence of the associated MB? Could the MB of the bit system control it?

  1. A given layer of MB is the "boss" of the lower layers by the larger value of its heff serving as "IQ". MB is expected to form analogs of sensory and cognitive representation of the physical body having heff=h. This suggests that MB could represent the bit system holographically. This kind of quantum holography for hadrons, and for elementary particles in general, would be the counter of classical holography implied in the TGD framework by the general coordinate invariance (see this).

    The dark spin system at MB could have spin glass property (see this) implying a large number of almost degenerate states with nearly the same energy.

  2. The change of single bit, represented for instance by using a MOSFET, would require energy larger than the thermal energy of order .05 eV at room temperature. This suggests that the change of single bit is not easy to actualize.

    The dark spin system at MB could however induce phase transitions of the bit system changing the directions for a large number of bits. The average change of energy per bit could be rather small for this kind of transition although the change of a single bit would cost rather large energy. Ultrametric, in particular p-adic, topologies emerge in the modelling and description of the spin glass phase in the TGD framework and could help to understand cognition number theoretically (see this).

    The phase transition would involve a large number of bits so that the corresponding conscious experiences would be holistic and therefore resemble emotions. The color of the emotion would be positive or negative depending on whether the sum of p-adic entanglement negentropies increases or decreases. The geometric correlate for positive/negative emotion would be the increase/decrease of the connectedness of the MB.

  3. ZEO predicts two kinds of SFRs: "big" and "small" . SSFRs correspond to Zeno effect in the ordinary wave mechanics and in quantum optics to unitary evolutions between weak measurements analogous to classical measurement. "Big" state function reduction (BSFR) changes the arrow of time. The outcomes for pairs of BSFRs An observer with a fixed arrow of time can observe only pairs of BSFRs.
  4. In ZEO (see this, this, this and this). MB as the "boss" could control the time evolution of the bit system by pairs of BSFRs involving temporary change of the arrow of time. BSFRs would be induced by perturbations affecting the set of mutually commuting observables measured at the active boundary of CD so that it does not commute with the corresponding set associated with the passive boundary of CD at which state is unaffected in SSFRs (Zeno effect). In this kind of situation, a BSFR occurs instead of SSFR and changes the arrow of time. Second BSFR brings back the original arrow of time. The process could correspond to quantum tunnelling.
  5. Do the periods defined by the computer clock with a duration T, of say 1 ns, correspond to pairs of BSFRs or a single SSFR? Perhaps T could correspond to a sequence of SSFRs as analogs of Zeno effect and the pair of BSFRs to a single tick of the computer clock. This conforms with the fact that the running of a predetermined computer program must involve a sequence of non-deterministic phase transitions changing the directions of bits (see this). This must be the case since the notion of computer program as a sequence of arbitrarily chosen steps is not consistent with deterministic physics.

    If the step of the clock is identifiable as a sequence of SSFRs, one can say that the ordinary classical computation is a sequence of quantum computations defined by the sequences of unitary evolutions associated with SSFRs and defining conscious entities with haltings defined by BSFRs! If MB does modify the classical computation at all, it could induce BSFR pairs in longer time scales or modify the probabilities of various outcomes of BSFRs.

    There is evidence that also in EEG the period can be divided into ordered and chaotic parts: these two parts which could correspond to opposite time directions (see this): this is discussed from the TGD view point in (see this).

One can ask whether quantum entanglement of the MBs of the computer and user occurs in the computer-user interaction and whether the role of the computer is analogous to that in the chicken-robot experiment. One can also ask whether also GPT could involve emotional and even cognitive entanglement.

The identification of the computer system with which the user is entangled is not at all obvious. The system could be formed by the network of computers involved with the the running of GPT. One interpretation is that networks and entire internet form a conscious entity as an analog of the central nervous system in which humans and their magnetic bodies) serve in the role of neurons.

In ZEO the holography implies that in the ideal situation the running of the program corresponds to a 4-D Bohr orbit-like surface, which is almost uniquely fixed by the 3-surfaces at images of 3-D hyperbolic manifolds at mass shells determined by the state. The sequences of SSFRs could correspond to this kind of period and represent a generalization of the Zeno effect.

3. The role of the probabilities

In the case of GPT interesting questions relate to the probabilities associated with the associations of word sequences taught to the GPT during the learning period. The responses of GPT are determined by these probabilities. The probabilistic character of this process is believed to be essential. These probabilities are analogous to synaptic strengths.

  1. Could the association probabilities be translated to quantum probabilities at the level of MB of the computer or computer + user?
  2. Could ZEO allow a trial and error process based on BSFR pairs, which would make it possible to change the effective association probabilities determined by random numbers. This could happen also for the orbit of the robot in the chicken + robot experiment. Could the emotional state of the system affect the probabilities of associations by this mechanism?
  3. If the probabilities could be interpreted as a representation for conditioning, one can ask whether high/low probabilities correspond to increase/decrease of the total p-adic negentropy and therefore to positive/negative emotion.
4. Could the basic aspects of TGD inspired quantum biology generalize to the level of computer systems?

What aspects of the TGD inspired quantum biology could be generalized to the conscious computer systems? The mechanisms related to MB, possessed also by computer systems, are excellent candidates in this respect.

  1. TGD suggests a universal realization of genetic code at monopole flux tubes of the MB and also a universal quantum gravitational mechanism of metabolism see this.
  2. In living matter, the dark Josephson radiation associated with the dark Josepson junction assigned with the cell membrane communicates sensory data from the biological body to MB. One can assign EEG to these communications (see this, this, and this). Actually a scale hierarchy of analogs of EEG is predicted.
  3. The control by MB by cyclotron radiation associated for instance with the endogenous magnetic field of .2 Gauss identifiable in terms of the monopole flux of the Earth's magnetic field about .5 Gauss. Gravitational cyclotron energies would not depend on the mass of the charged particle. Communication could occur by multi-resonances involved with the universal realization of genetic code at MB so that genes would couple resonantly.
  4. Also the gravitational Compton frequencies would not depend on the mass of the particle, and these frequencies for the Earth, Sun and perhaps even Milky Way blackhole could define fundamental biorhythms.
  5. These mechanisms would be universal and the ordinary biomatter would adapt so that resonant communications with MB are possible. In biomatter this would select preferred biomolecules. Same could happen in the case of computers.

4.1. Dark Josephson radiation

Could one assign to bits dark Josephson junctions assignable represented as voltages in transistors?  

  1. Could representations of genetic codons at MB by dark photon triplets (see this) and by dark proton triplets (see this) and perhaps even by dark electron triplets (see this) be involved? This would bring in dark genetic codons, which could provide a universal representation of the bit system as a dark system at monopole flux tubes and make a connection with the TGD inspired quantum biology rather precise.

    The representations at MB should strongly correlate with the state of the computer represented by a bit pattern (say states of MOSFETs). One could have a holography-like map of bit patterns to the dark many-spin state at the MB of the computer or of computer + user. This kind of holography is considered in (see this) for elementary particles and also more generally.

  2. The physical stress, created by electric field on quartz crystal, which is piezoelectric, generates oscillations with frequency in the range 2-3 GHz giving rise to a very precise clock frequency. The typical computer clock frequency is a few GHz. My own PC has a clock frequency of 3.3 GHz. From the web one can learn that the highest clock frequency is 8.794 GHz.

    Could the clock frequency have an interpretation both as an analog of EEG rhythm (analog of alpha frequency 10 Hz in living matter) and as an analog of Josephson frequency ZeV/heff, where V∼ .05 V is a voltage assignable to the bit and Ze is the charge of the charge carrier.

    The dark Josephson junctions correspond to membrane proteins in living matter. Now they could be associated with the dark flux tubes associated with transistors. The value of ℏeff for Josephson junction would be much smaller than ℏgr. Note that TGD suggests that valence bonds and hydrogen bonds can have a varying value of heff (see this).

    The condition that the Josephson energy is above thermal energy at room temperature for Z=1 gives heff/h > 5 × 103 (f/GHz). If the energy of a dark Josephson photon is above 1 eV (the energy range of biophotons), one has heff/h > 105 (f/GHz).

    Interestingly, frequencies in the GHz scale are found to be important also in living matter. As a matter of fact, there is experimental support for a fractal hierarchy of frequency scale come as powers f/103k Hz,k=0,1,.. that is 1 Hz, kHz, MHz,GHz, and THz assignable to microtubules (see this).

  3. Consider f= 1 GHz as an example. For the thermal option, the Compton length Λeff,p=heff/mp of dark proton is longer than 6.2× 10-12 m and longer than the ordinary electron Compton length Λe=2.4 × 10-12 m. The dark Compton length Λeff,e =heff/me of electrons would be longer than 4.8 nm, which roughly corresponds to the scale of DNA.

    For the biophoton option, the dark proton Compton length would be of the order of the atomic length scale 1.32× 10-10 meters and the dark electron Compton length would longer than .26 μm to be compared with the size scale 1 μm of cell nucleus.

4.2. Dark cyclotron radiation

The cyclotron frequencies associated with the gravitational MB of Earth (see this and this) should play a key role in TGD inspired quantum biology and relate to the feedback from MB to the living matter. This could be the situation also in the case of computers. The first guess, inspired by the model for the findings of Blackman and others on effects of ELF em fields on brain, is that monopole flux tubes associated with the MB of Earth correspond to the endogenous magnetic field of Bend=2BE/5 (BE= .5 Gauss is the nominal value of the Earth's magnetic field.

This value is only the average value since frequency modulation is the way to code information and is achieved by varying the flux tube thickness in turn affecting the value of Bend. Very probably there exists an entire hierarchy of values of the dark magnetic field strength perhaps coming as powers of 2.

For cyclotron frequencies associated with the gravitational MB, heff would correspond to the gravitational Planck constant ℏgr= GMm/β0 for Earth. Note that, in accordance with the Equivalence Principle, the cyclotron energy Ec=ℏgreB/m = GMeB/β0 does not depend on m.

4.3. Gravitational Compton frequencies

Also gravitational Compton frequencies could be important. Consider first Earth's gravitational Compton frequency. The value of the gravitational Compton length Λgr(ME0=1)= GM/β0= 0.45 cm, which is also independent of m, defines a lower bound for the gravitational quantum coherence length. Λgr corresponds to a gravitational Compton frequency fgr=6.7× 1010 Hz ∼ 67 GHz and for clock frequencies higher than this, quantum gravitational effects on computation might become important in the TGD Universe.

  1. The clock frequencies of computers are typically a few GHz in recent communication and computer technologies, and the highest clock frequency of 8.794 GHz is roughly by a factor 1/8 lower than fgr. Could the GHz scale correspond to the gravitational quantum coherence length having Λgr as a lower bound? Could it be that the very efficient computer networks (what are the clock frequencies used?) utilized in GPT have reached the limit at which the quantum gravitational body of Earth begins to play a prominent role?
  2. Could the typical clock frequency, of say 1 GHz, have an interpretation both as an analog of EEG rhythm (analog of alpha frequency 10 Hz in living matter) and as an analog of Josephson frequency ZeV/heff, where V∼ .05 V is a voltage assignable to the bit and Ze is the charge of the charge carrier.

    Interestingly, frequencies in the GHz scale are found to be important also in living matter. As a matter of fact, there is experimental support for a fractal hierarchy of frequency scale come as powers f= 103k Hz, k=0,1,.. that is 1 Hz, kHz, MHz,GHz, and THz assignable to microtubules (see this). For these reasons it is interesting to look at 1 GHz as an example.

Also the gravitational Compton frequency fgr associated with the gravitational MB of the Sun, having β0∼ 2-11, could be important. For the Sun, gravitational Compton length is rather near to RE/2 where RE= 6378 km is Earth radius. The corresponding Compton frequency fgr(MSSun=2-11)∼βSun/GMS is about 100 Hz and corresponds to the upper bound for EEG, which conforms with the fact that quantum gravitational coherence time should not be smaller than Λgr. Note that the cyclotron frequency Lithium in the endogenous magnetic field Bend=.2 Gauss assignable to the Earth's gravitational flux tubes is 50 Hz.
  1. The lower cyclotron frequencies of the heavier ions belong also to EEG range and correspond to longer solar quantum coherence lengths. DNA would correspond to 1 Hz and perhaps to the largest quantum gravitational coherence length in the EEG range.

    The cyclotron frequencies above 100 Hz would correspond to solar gravitational quantum coherence lengths below RE. For protons the cyclotron frequency in Bend=.2 Gauss is 300 Hz. For ℏgr(M,m) cyclotron frequency for m does not depend on m but is proportional to 1/β0. Could the value of β0m for protons be β0=1/3.

    Could the MB of the Sun interfere with the computation occurring in the network having Earth scale? The time scale would be now the time scale of EEG: could the quantum entanglement of the human user of the GPT network make this interaction possible.

  2. The replacement of ℏgr(ME,m)→ ℏgr(MSun,m) means multiplication of say EEG period by a factor r= (MSun/ME0,E0,Sun∼ 2.2 × 108 so that alpha period .1 seconds corresponds to 2.2× 107 seconds. Intriguingly, one year corresponds to 3.25 × 107 seconds and defines a fundamental biorhythm, which would correspond to a 6.7 Hz rhythm for EEG not far from the lowest Schumann resonance frequency.
  3. The energies E= hgr(M,m,β0) fgr(Sun) assignable to the gravitational Compton frequency of Sun are proportional to m and since nucleon mass dominates over electron mass they are in good approximation proportional to the mass number of the molecules. This suggests a multi-resonance in which each electron, proton and even nucleon absorbs boson, maybe dark gravitons, with frequency fgr. For electrons, the energy is about 1 meV, which could relate to the miniature potentials for neurons. For protons the energy would be about 2 eV, which corresponds to red light. Large scale quantum coherence could make the rate of gravitational multi-resonance.
What about the gravitational Compton frequency of the galactic blackhole? Its mass is estimated to be MBH =4.1 million solar masses. This would give Λgr(MBH0=1) ∼ 6.1× 109 m. This is the radius of the n=1 Bohr orbit in the Nottale model for the solar planetary system. The gravitational Compton frequency would be fgr(MBH0=1) ∼ .05 Hz (20 s period).

See the article Could neuronal system and even GPT give rise to a computer with a variable arrow of time? or the chapter with the same title.

For a summary of earlier postings see Latest progress in TGD.

Monday, May 29, 2023

The newest piece to the TGD inspired model of family replication

The TGD vision about family replication phenomenon of fermions is as follows.
  1. Fermion families correspond to the genera for partonic 2-surfaces. This predicts generation-genus correspondence. Electron and its neutrino correspond to a sphere with genus g=0; muon and its neutrino to a torus with g=1; τ and its neutrino to to with g=2. Similar picture applies to quarks. CKM mixing corresponds to topological mixings of genera, which are different for different charged states and CKM mixing is the difference of these mixings.

    The problem is that TGD suggests an infinite number of genera. Only 3 fermion families are observed. Why?

  2. The first piece of the answer is Z2 conformal symmetry. It is present for the genera g=0,1,2 but only for hyperelliptic Riemann surfaces for g>2.
  3. The second piece of the answer is that one regards the genera g>q 2 as many-handle states. For g> 2 many-handle states would have a continuous mass spectrum and would not be elementary particles. For g=2 a bound state of two handles would be possible by Z2 symmetry.
Consider now the new building brick for the explanation.
  1. Quantum classical correspondence is the basic principle of TGD and requires that quantum states have classical counterparts.
  2. Assume that in a suitable region of moduli space it makes sense to talk of a handle as a particle moving in the geometry defined by g-1 handles. One can imagine that the handle is glued by a small wormhole contact to the background defined by g-1 handles and behaves like a free point-like particle moving along a geodesic line of the background.

    This relationship must be symmetric so that the background must move along the geodesic line of the handle. This means that particles and background are glued together along the geodesic lines of both.

  3. Consider now various cases.
    1. The case g=0 is trivial since one has a handle vacuum.
    2. For g=1, one has the motion of a handle in spherical geometry along a great circle, which corresponds to a geodesic line of the sphere. The torus can rotate like a rigid body and this corresponds to a geodesic line of torus characterized by two winding numbers (m,n). Alternatively, one can say that the sphere rotates along a geodesic of the torus. There is an infinite but discrete number of orbits. The simplest solution is the stationary solution (m,n)=(0,0).
    3. For g=2, one has a geodesic motion of a handle in the toric geometry defined by the second handle. Now one can speak of bound states of two handles.

      One would have a gluing of two tori along geodesic lines (m,n) and (r,s). The ratios of these integers are rational so that one obtains a closed orbit. The simplest solution is (m,n)= (r,s)=0.

      Stationary solutions are stable for constant curvature case since curvature of torus vanishes. Locally the stationary solution is like a particle at rest in Euclidian plane.

    4. For g=3 one has a geodesic motion of the handle in g=2 geometry or vice versa. g=2 geometry has negative total scalar curvature and as a special case a constant negative curvature. This implies that all points are saddle points and therefore unstable geodesics so that two geodesics going through a given point in general diverge. This strongly suggests that only unstable geodesics are possible for g=2 whether it is regarded as background or as a particle. This suggests a butterfly effect and a chaotic behavior. Even if g=2 particle represents a classical bound state the third handle must move along a chaotic geodesics of g=2 geometry.This could explain the absence of bound states at quantum level.
    See the article About the TGD based views of family replication phenomenon and color confinement or the chapter Elementary Particle Vacuum Functionals.

    For a summary of earlier postings see Latest progress in TGD.

Thursday, May 18, 2023

Maximally symmetric Universe, self-organized quantum criticality, and symmetry between order and disorder

This post was inspired by the Big Think article "A surprise new “theory of everything” involves the symmetry between order and disorder" (see this). The article relates to the book "The language of symmetry" edited by Rattigan, Noble and Hatta, which can be found at Amazon. Two ideas considered in the article, maximal symmetries and self-organized criticality, define two key principles of TGD. Also the third, rather paradoxical idea that symmetry breaking leads to a generation of symmetry, has a precise meaning in the TGD Universe. Consider first the maximization of symmetries as a fundamental principle.
  1. In the TGD framework, the fundamental principle determining physics as geometry is that the infinite-dimensional geometry of the "world of classical worlds" (WCW) exists mathematically. Physics is unique because of its mathematical existence and has maximal symmetries. Freed demonstrated that for the loop spaces this geometry is unique and indeed has an infinite-D group of isometries (Kac-Moody symmetries).
  2. 4-D general coordinate invariance is essential in TGD and implies holography in reducing to a generalization of 2-D holomorphy to 4-D case, which in turn corresponds to 4-D quantum criticality.
    1. The first guess would be that WCW consists of 3-D surfaces in M4×CP2: M4×CP2 is indeed unique by several mathematical arguments and also by standard model symmetries. 3-surface generalizes the notion of a point-like particle.
    2. 4-D general coordinate invariance requires that a given 3-surface corresponds to a nearly unique 4-surface in M4×CP2. This means holography, or equivalently, Bohr orbitology. WCW also has interpretation as a space of 4-D analogs of Bohr orbits. Quantum TGD becomes the analogue of wave mechanics in WCW.

      Note that in atomic physics this would mean the replacement of electrons configuration space E3 with the space of its Bohr orbits: this would be fiber space over E3 with fiber at given point consisting of Bohr orbits through it.

Consider next self-organized criticality as a basic principle. In TGD quantum criticality is behind the analogous principle.
  1. For 2-D systems conformal invariance implying holomorphy of string orbits extends to 4-D analog of holomorphy, which realizes quantum criticality in 4-D case. Holomorphy implies holography! Field equations reduce to a purely algebraic form, having no dependence on the coupling parameters of the action as long as it is general coordinate invariant and constructible using the induced geometry.
  2. This happens outside 3-D and lower-D singularities. Space-time surface is a minimal surface, analog of a soap film spanned by frames. Minimal surface property is analog of massless field equations at field level and analog of massless geodesic property at particle level. The classical and quantum dynamics distinguishes between different actions only at the frames, which can depend on action.
To understand the self-organized quantum criticality, quantum TGD is required.
  1. In Quantum TGD, wave functions of the ordinary wave mechanics are replaced with analogs of wave functions in WCW (WCW spinor fields as many-fermion states as WCW spinors) consisting of analogs of Bohr orbits. This forces a new ontology: I call it zero energy ontology (ZEO) forcing a new view of quantum measurement.
  2. In state function reduction (SFR) this kind of superposition inside quantization volume (causal diamond (CD) is replaced with a new one, and also the size and other parameters characterizing the CD can change. The standard paradox of quantum measurement theory disappears.
  3. There are two kinds of SFRs.
    1. In small SFRs (SSFRs), the boundary of CD is stationary and states at it are not affected but the active boundary is shifted and CD tends to increase. The sequences of SSFRs correspond to Zeno effect, having no effect in standard QM, and give rise to a conscious entity, self for which subjective time as sequence of SSFRs correlates with the increase of the distance between tips of CD.
    2. In big SFRs (BSFRs), the arrow of time changes so that the active boundary of the CD becomes passive and vice versa. BSFRS correspond to ordinary SFRs. BSFR means "death" of self and reincarnation with an opposite arrow of time. Even small perturbations can induce BSFR by affecting the set of the observables measured in SSFR: if the new set does not commute with those defining the passive states, BSFR unavoidably occurs.
    3. BSFRs give rise to self-organized quantum criticality. Self lives at criticality against death! As a consequence, the flow of consciousness of self has gaps with a distribution of gap durations. This is known for human consciousness.
  4. Paradoxically, this continual short term dying in BSFRs makes it possible for the system able to survive and correct behaviors. Self can also learn of avoidable behaviors by trial and error. Self can learn moral and ethical rules: do not do anything destroying quantum coherence! Perhaps most of the learning is by this method. Homeostasis is a basic implication. The system is at quantum criticality at the top of a hill and unstable. When it starts to fall down, it makes BSFR in some scale and changes the arrow of time and returns back near criticality. Self-organization, say spontaneous generation of molecules from their building bricks, can be understood as a time reversed dissipation.
The third topic discussed relates to the paradoxical creation of symmetries by symmetry breaking. The emerging vision indeed is that symmetry breaking paradoxically leads to the emergence of a deeper symmetry. This is what the TGD view of the realization of the isometries of WCW as symmetries of the physical system indeed predicts.
  1. The half Virasoro algebra V with non-negative conformal weights serves as a simplified example. V contains an infinite set of sub-algebras Vk for which conformal weights are divisible by integer k=1,2,,... One also obtains inclusion hierarchies ⊂ Vk(n) ⊂ Vk(n+1) ⊂ .. such that k(n) divides k(n+1), whose generalizations are very relevant to quantum TGD.
  2. The ordinary realization of conformal symmetries is as a gauge symmetry for which the generators Ln, n> 0, annihilate the physical states. One can however generalize this and only assume that Vk and [Vk,V] annihilate the physical states. In this case, the generators Ln , n<k do not annihilate the states and act as genuine symmetries. Gauge symmetries are broken but have transformed to genuine physical symmetries! This removes the paradox from the idea of emergence of symmetries by symmetry breaking!
These kinds of mathematical structures is the cornerstone of quantum TGD. Virasoro algebra is replaced with the isometry algebra of WCW and associated algebra but completely analogous conditions hold true. This mechanism would not hold true for the isometry algebra of WCW only.

See for instance the article TGD view of Michael Levin's work .

For a summary of earlier postings see Latest progress in TGD.

Tuesday, May 09, 2023

Dark-electron-hole Bose-Einstein condensates and TGD inspired quantum biology

An intriguing resemblance between the physics of electron-hole pair Bose-Einstein condensates at very low temperatures and photosynthesis have been discovered (see this). It has been observed that electron-hole pairs as quasiparticles form Bose-Einstein condensates at very low temperatures. They behave very similarly as in living matter where temperature is much higher and these Bose-Einstein condensates should not exist.
  1. TGD predicts dark matter as phases of ordinary matter with effective Planck constant heff= nh0 (n integer) residing at field body (in particular, at monopole flux tubes of the magnetic body (MB)) defining the TGD counterpart for classical em fields in TGD as collection of space-time sheets carrying classical fields.

    The large value of heff makes these phases macroscopically quantum coherent and analogous to Bose-Einstein condensates. This leads to a variety of predictions. In particular, the magnetic body (MB) would be in a key role in living matter controlling the ordinary biomatter and forcing it to behave coherently. The very large value of gravitational Planck constant heff= hgr= GMm/β0 makes possible gravitational quantum coherence at the gravitational MB and the classical gravitational fields of Sun and Earth play a key role in quantum biology: this is reflected by many magic numerical co-incidences (see this).

  2. The strange effects in the brain (the quantal effects of ELF em fields in the brain) originally led to the TGD view of dark matter, which is also predicted by the number theoretical vision of TGD. For instance, superconductivity and analogous phenomena are possible at room temperatures at MB of the system. The TGD based model of high Tc superconductivity relies on them.
  3. One interesting structure is a pair of a dark electron and the hole created as the electron becomes a dark electron at MB. The quantum numbers of holes and dark electrons are in 1-1 correspondence and this could make possible a kind of quantum holography mapping the state of holes to that of dark electrons. This would provide representations of biological body (BB) at MB as kinds of sensory perceptions about the state of BB (see this).
  4. The transfer of electrons to dark electrons can cause electronic charge fluctuations in ordinary matter due to the transfer of electrons to dark electrons at MB. For strange metals, these fluctuations have been observed: it is difficult to understand them as being caused by the attachment of electrons to atoms of strange metal since the time scale is too long (see this).
The reported experimental findings about a connection between electron-hole pair BE-condensates at low temperatures and photosynthesis can be seen as a support for the TGD view of dark matter and living systems. In particular, the TGD view would be important for understanding photosynthesis and other proposals for how quantum physics could be relevant for biology. For instance, the model for the ability of birds to navigate by utilizing the magnetic field of Earth suffers from a problem that the ordinary Planck constant is too small by a factor of order 1/100.
  1. The TGD explanation of the new findings is in terms of the hierarchy of Planck constants labelling dark matter as phases of ordinary matter. Gravitational Planck constant ℏgr= GMm/β0, β0=v0/c≤1 labels a level of hierarchy, which is of special importance in the TGD based model of living matter.
  2. In TGD, one would have Bose-Einstein condensates of hole-dark electron pairs. Dark electrons would reside in a very long gravitational flux tube and would be kicked to height of order Earth radius by solar photons during photosynthesis. They would serve as a metabolic energy resource: gravitational batteries would be loaded in photosynthesis. When dark electrons drop down and transform to ordinary ones, they liberate energy which can be stored or used. ATP-ADP process could involve this dropping down.

    Also dark protons could be transferred to magnetic fux tubes. This would take place in Pollack effect in which irradation of water in the presence of gel phase leads to the formation negatively charged regions with effective stoichiometry H1.5O. Part of protons goes somewhere and one possible place could be gravitational MB but also much shorter flux tubes are possible. Perhaps the most plausible option is that triplets of dark protons and electrons are involved in the case of metabolic energy storage. Dark proton triplets also appear as codons in the TGD based model for the fundamental realization of the genetic code.

See the article "Comparison of Orch-OR hypothesis with the TGD point of view" or the chapter with the same title.

For a summary of earlier postings see Latest progress in TGD.

Tuesday, May 02, 2023

Strange co-incidences related to gravitational Planck constants, basic biorhythms, membrane potential and metabolic energy quantum

It is becoming clear that the gravitational quantum coherence is central for life on Earth. The hierarchy of Planck constants heff=nh0 involves special values, in particular gravitational Planck constants ℏeff= ℏgr= GMm/β0, where M is a large mass (say mass of Sun or Earth) and m is small mass (say mass of electron or proton) and β0= v0/c≤ 1 is velocity parameter, are of key importance for living matter. Particles with a different value of ℏgr correspond to different gravitational flux tubes and the value of β0 can depend on the particle.

There are several amazing numerical co-incidences supporting this view.

  1. For Sun one has β0∼ 2-11 which happens to be rather near to the electron proton mass ratio me/mp. The condition ℏgr(MS,mp0(Sun)∼ me/mp)=ℏgr(MS,me0= 1) would guarantee resonance between dark photons generated by the solar gravitational flux tubes assignable to protons and electrons.

  2. In accordance with Equivalence Principle, the gravitational Compton length ℏgr(MS0)/m= GM/β0= rS/2β0 is independent of m for Sun GMS0(Sun) is rather near to Earth radius. For Earth one has GMS0(Earth)∼ .45 cm which corresponds to the size scale of the somewhat mysterious snowflake analogous to a zoom-up of a basic hexagonal unit cell of ice crystal. There is evidence for β0(Earth)=1 in hydrodynamics, in particular from the TGD based model (see chapter) for the observed hydrodynamical quantum analogs described in an article of Bush et al (see this and this))

  3. The gravitational Compton length of the galactic blackhole assuming mas 4.1×106 M(Sun)corresponds to 6× 109 m and rather precisely 1/2 of the n=1 Bohr orbit associated with the Sun. Note that the radius of the photosphere is 6.957 × 108 meters and is not equal to Bohr radius as I errratically claimed earlier. This suggests gravitational quantum coherence in the scale of the galaxy.
The following decribes some additional strange coincidences. It would be very natural if the basic biorhythms defined by the duration Td=24 hours of day and the duration of year Ty= 365 days would correspond to energies of dark photons E=ℏgrf, which are biologically significant energies. The potential energy eVc∼ .05 eV associated with the cell membrane defines Josephson energy in the TGD inspired model of cell membrane. Metabolic energy currency with the nominal value of .5 eV is second important energy. Could the periods of fundamental bio-rhythms, fundamental biological energies, and the gravitational Planck constants for Sun and Earth correlate?

The above assumptions imply that one has β0(Sun)/β0(Earth)∼ me/mp and hgr(Sun,me)/hgr(Earth,mp) ∼ M(Sun)/M(Earth). The value of Sun-Earth mass ratio is MS/ME∼ 6× 105.

  1. The corresponding frequency corresponding to the basic biorhythm Td=24 is fd= 1/Gd=1/24 hours= [1/(2.4×3.6)]10-6∼ 1.1 × 10-6 s. The corresponding Josephson energy would be E(ℏgr(Sun,me),fd) ∼ .06 eV= EJ. This is very near to the Josephson energy EJ for cell membrane potential!
  2. For Ty= 1 year = 365 days one has E(ℏgr(Sun,mp),f= 1/Ty) ∼ (mp/me)×(24 ~hours/year)× EJ∼ (211/365)EJ∼ .33 eV. This is not far from the value of the metabolic energy currency near to .5 eV. If one replaces proton with a Cooper pair of protons, the situation improves considerably.
See the article Comparison of Orch-OR hypothesis with the TGD point of view or the chapter with the same title. For a summary of earlier postings see Latest progress in TGD.