Progress at the level of basic TGD
The basic goal is to improve the understanding about quantum-classical correspondence. The dynamics of soap films serves as an intuitive starting point.
- In TGD frame 3-surfaces at the boundaries of CD define the analog of frame for a 4-D soap film as a minimal surface outside frame. This minimal surface would be an analog of a holomorphic minimal surface and simultaneous exremal of Kähler action except at the frame where one would have delta function singularities analogous to sources for massless d'Alembert equation.
- There is also a dynamically generated part of the frame since the action contains also Kähler action. The dynamically generated parts of the frame would mean a failure of mimimal surface property at frame and also the failure of complete determinism localized at these frames.
- At frame only the equations for the entire action containing both volume term and Kähler term would be satisfied. This guarantees conservation laws and gives very strong constraints to what can happen at frames.
The frame portions with various dimensions are analogous to the singularities of analytic functions at which the analyticity fails: cuts and poles are replaced with 3-, 2-, and 1-D singularities acting effectively as sources for volume term or equvavelently Kähler term. The sum of volume and Kähler singularities vanish by field equations. This gives rise to the interaction between volume and Kähler term at the loci of non-determinism.
- H-picture suggests that the frames as singularities correspond to 1-D core for the deformations of CP2 type extremals with light-like geodesic as M4 projection, at partonic 2-surfaces and string world sheets, and at 3-D t=tn balls of CD as "very special moments in the life of self" which integrate to an analog of catastrophe.
Deformations of Euclidian CP2 type extremals, the light-like 3-surfaces as partonic orbits at which the signature of the induced metric changes, string world sheets, and partonic 2-surfaces at r=tn balls taking the role of vertices give rise to an analog of Feynman (or twistor -) diagram. The external particles arriving the vertex correspond to different roots of the polynomial in M8 picture co-inciding at the vertex.
There is a nice analogy with the catastrophe theory of Thom. The catastrophe graph for cusp catastrophe serves as an intuitive guide line. Imbedding space coordinates serve as behaviour variables and space-time coordinates as control variables. One obtains a decomposition of space-time surface to regions of various dimension characterized by the degeneracy of the root.
Progress in the understanding of TGD inspired theory of consciousness
The improved view about ZEO makes it possible to define the basic notions like self, sub-self, BSFR and SSFR at the level of WCW. Also the WCW correlates for various aspects of consciousness like attention, volition, memory, memory recall, anticipation are proposed. Attention is the basic process: attention creates sub-CD and subself by a localization in WCW and projects WCW spinor field to a subset of WCW. This process is completely analogous to position measurement at the level of H. At the level of M8 it is analogous to momentum measurement.
One can distinguish between the Boolean aspects of cognition assignable to WCW spinors as fermionic Fock states (WCW spinor field restricted to given 3-surface). Fermionic consciousness is present even in absence of non-determinism. The non-determinism makes possible sensory perceptions and spatial consciousness.
A precise definition of sub-CD as a correlate of perceptive field at WCW level implies that the space-time surfaces associated with sub-CDs continue outside it. This gives powerful boundary conditions on the dynamics. For the largest CD in the hierarchy of CDs of a given self, this constraint is absent, and it is a God-like entity in ZEO. This leads to a connection between the western and eastern views about consciousness.
A connection with the minimal surface dynamics emerges. The sub-CDs to which mental image as subselves are assigned would be naturally associated with portions of dynamically generated frames as loci of non-determinism. If one identifies partonic 2-surfaces as vertices, one can interpret the collection of possible space-time surfaces for a fixed 3-surface at PB as a tree. All paths along the tree are possible time-evolutions of subself. The dynamics of consciousness for fixed 3-surface at PB becomes discrete and provides discrete correlate for a volitional action as selection of a path or a subset of paths in the tree. The reduction of dynamics of mental imagines to discrete dynamics would mean a huge simplification and conforms with the discreteness of cognitive representations.
Challenges
There are many challenges to be faced. The discreteness dynamics of sub-self consciousness certainly correlates with the notion of cognitive representation based on adelic physics and implying a discretization at both space-time level and WCW level. The Galois group for the extension of rationals acting on the roots of the polynomial plays a key role in this dynamics.
One teaser question remains. Localization requires energy quite generally and this conforms with the fact that mental images demand metabolic energy feed. It is possible to redirect attention and remain unclear whether the mental image disappears totally or suffers BSFR.
See the article Some questions concerning zero energy ontology.
For a summary of earlier postings see Latest progress in TGD.
No comments:
Post a Comment