In this article, a model inspired by the finding that the water-air boundary involves an ice-like layer. The proposal is that also at criticality for the freezing a similar layer exists and makes possible fluctuations of the size and shape of the ice blob. At criticality the change of the Gibbs free energy for water would be opposite that for ice and the Gibbs free energy liberated in the formation of ice layer would transform to the energy of surface tension at water-ice layer.
This leads to a geometric model for the freezing phase transition involving only the surface energy proportional to the area of the water-ice boundary and the constraint term fixing the volume of water. The partial differential equations for the boundary surface are derived and discussed.
If Δ P=0 at the critical for the two phases at the boundary layer, the boundary consists of portions, which are minimal surfaces analogous to soap films and conformal invariance characterizing 2-D critical systems is obtained. For Δ P≠ 0, conformal invariance is lost and analogs of soap bubbles are obtained.
In the TGD framework, the generalization of the model to describe freezing as a dynamical time evolution of the solid-liquid boundary is suggestive. An interesting question is whether this boundary could be a light-like 3-surface in H=M4× CP2 and thus have a vanishing 3-volume. A huge extension of ordinary conformal symmetries would emerge.
See the article TGD inspired model for freezing in nano scales or the chapter with the same title.
For a summary of earlier postings see Latest progress in TGD.
No comments:
Post a Comment