Monday, June 10, 2024

Holography=holomorphy vision in relation to quantum criticality, hierarchy of Planck constants, and M8-H duality

Holography=holomorphy vision generalizes the realization of quantum criticality in terms of conformal invariance. Holography=holomorphy vision provides a general explicit solution to the field equations determining space-time surfaces as minimal surfaces X4⊂ H=M4× CP2. The space-time surfaces are roots of two generalized analytic functions defined in H.

By holography, the space-time surfaces correspond to not completely deterministic orbits of particles as 3-surfaces and are thus analogous to Bohr orbits. This implies zero energy ontology (ZEO) and to the view of quantum TGD as wave mechanics in the space of these Bohr orbits located inside a causal diamond (CD), which form a causal hierarchy. Also the consruction of vertices for particle reactions has evolved dramatically during the last year and one can assign the vertices to partonic 2-surfaces.

M8-H duality is a second key principle of TGD. M8-H duality can be seen a number theoretic analog for momentum-position duality and brings in mind Langlands duality. M8 can be identified as octonions when the number-theoretic Minkowski norm is defined as Re(o2). The quaternionic normal space N(y) of y∈ Y4⊂M8 having a 2-D commutative complex sub-space is mapped to a point of CP2. Y4 has Euclidian signature with respect to Re(o2). The points y\∈ Y4 are lifted by a multiplication with a co-quaternionic unit to points of the quaternionic normal space N(y) and mapped to M4⊂ H inversion.

This article discusses the relationship of the holography=holomorphy vision with the number theoretic vision predicting a hierarchy heff=nh0 of effective Planck constants such that n corresponds to the dimension of extension rationals. How could this hierarchy follow from the recent view of M8-H duality. The proposed realization relies on the idea that quantum criticality implies that the two polynomials P1,P2 defining space-time surfaces as their roots have rational coefficients at the partonic 2-surfaces X2 appearing as generalized vertices. Partonic 2-surfaces would represent a stronger form of quantum criticality than generalized holomorphy so that the islands of algebraic extensions from the ocean of complex numbers would be selected. Adelic physics would emerge at quantum criticality and scattering amplitudes would become number-theoretically universal. In particular, the hierarchy of Planck constants and the identificaiton of p-adic primes as ramified primes would emerge as a prediction.

Also a generalization of the theory of analytic functions to the 4-D situation is suggestive. The poles of cuts of analytic functions would correspond to the 2-D partonic surfaces as vertices at which holomorphy fails and 2-D string worlds sheets could correspond to the cuts. This provides a general view of the breaking of the generalized conformal symmetries and their super counterparts as a necessary condition for the non-triviality of the scattering amplitudes.

See the article Holography=holomorphy vision in relation to quantum criticality, hierarchy of Planck constants, and M8-H duality or the chapter with the same title.

For a summary of earlier postings see Latest progress in TGD.

For the lists of articles (most of them published in journals founded by Huping Hu) and books about TGD see this.

Tuesday, June 04, 2024

About the origin of multicellularity in the TGD Universe

A living organism consists of cells that are almost identical and contain DNA that is the same for all of them but expresses itself in different ways. This genetic holography is a fundamental property of living organisms. Where does it originate?

Dark DNA associated with magnetic flux tubes is one or the basic predictions of the TGD inspired biology. One can say that the magnetic body controls the ordinary biomatter and dictates its development. Could one have a structure that would consist of a huge number of almost identical copies of dark DNA forming a quantum coherent unit inducing the coherence of ordinary biomatter? Could this structure induce the self-organization of the ordinary DNA and the cell containing it.

Could one understand this by using the TGD based spacetime concept. There are two cases to be considered. The general option is that fi are analytic functions of 3 complex coordinates and 1 hypercomplex (light-like) coordinate of H and (f1,f2)=(0,0) defines the space-time surface.

A simpler option is that fi are polynomials Pi with rational or even algebraic coefficients. Evolution as an increase of number theoretic complexity (see this) suggest that polynomials with rational coefficients emerged first in the evolution.

  1. For the general option (f1,f2), the extension of rationals could emerge as follows. Assume 2-D singularity X2i at a particular light-like partonic orbit (mi such orbits for fi) defining a X2i as a root of fi. If f2 (f1 ) is restricted to X21 resp. X22 is a polynomial P2i with algebraic coefficients, it has m2 resp. m1 discrete roots, which are in an algebraic extension of rationals with dimension m2 resp. m1. Note that m2 can depend on X2i. Only a single extension appears for a given root and can depend on it. The identification of heff=nih0 looks natural and would mean that heff is a local property characterizing a particular interaction vertex. Note that it is possible that the coefficients of the resulting polynomial are algebraic numbers.

    For the polynomial option (f1,f2)=(P1,P2), the argument is essentially the same except that now the number of roots of P1 resp. P2 does not depend on X22 resp. X21. The dimension n1 resp. n2 of the extension however depends on X22 resp. X21 since the coefficients of P1 resp. P2 depend on it.

  2. The proposal of the number theoretic vision of TGD is that the effective Planck constant is given by heff=nh0, h0<h is the minimal value of heff and n corresponds to the dimension of the algebraic extension of rationals. As noticed, n would depend on the roots considered and in principle m=m1m2 values are possible. This identification looks natural since the field of rationals is replaced with its extension and n defines an algebraic dimension of the extension. n=m1m2 can be also considered. For the general option, the degree of the polynomial P1 can depend on a particular root X22 of f2 .
  3. The dimension nE of the extension depends on the polynomial and typically seems to increase with an exponential rate with the degree of the polynomials. If the Galois group is the permutation group Sm it has m! elements. If it is a cyclic group Zm, it has m elements.
For the original view of M8-H duality, single polynomial P of complex variable with rational coefficients determined the boundary data of associative holography (see this, (see this, and this). The iteration of P was proposed as an evolutionary process leading to chaos (see this) and led to an exponential increase of the degree of the iterated polynomial as powers mk of the degree m of P and to a similar increases of the dimension of its algebraic extension.

This might generalize to the recent situation (see this) if the iteration of polynomials P1 resp. P2 at the partonic 2-surface X22 resp. X21 defining holographic data makes sense and therefore induces a similar evolutionary process by holography. This could give rise to a transition to chaos at X2i making itself manifest as the exponential increase in the number of roots and degree of extension of rationals and heff. One can consider the situation also from a more restricted point of view provided by the structure of H.

  1. The space-time surface in H=M4× CP2 can be many-sheeted in the sense that CP2 coordinates are m1-valued functions of M4 coordinates. Already this means deviation from the standard quantum field theories. This generates a m1-sheeted quantum coherent structure not encountered in QFTs. Anyons could be the basic example in condensed matter physics (see this). m1 is not very large in this case since CP2 has extremely small size (about 104 Planck lengths) and one would expect that the number of sheets cannot be too large.
  2. M4 and CP2 can change the roles: M4 coordinates define the fields and CP2 takes the role of the space-time. M4 coordinates could be m2 valued functions of CP2 coordinates: this would give a quantum coherent system acting as a unit consisting of a very large number m2 of almost identical copies at different positions in M4. The reason is that there is a lot of room in M4. These regions could correspond to monopole flux tubes forming a bundle and also to almost identical basic units.

    If mi corresponds to the degree of a polynomial, quite high degrees are required. The iteration of polynomials would mean an exponential increase in powers dk of the degree d of the iterated polynomial P and a transition to chaos. For a polynomial of degree d=2 one would obtain a hierarchy m=2k.

  3. Lattice like systems would be a basic candidate for this kind of system with repeating units. The lattice could be also realized at the level of the field body (magnetic body) as a hyperbolic tessellation. The fundamental realization of the genetic code would rely on a completely unique hyperbolic tessellation known as icosa tetrahedral tessellation involving tetrahedron, octahedron and icosahedron as the basic units (see this and this). This tessellation could define a universal genetic code extending far beyond the chemical life and having several realizations also in ordinary biology.
  4. The number of neurons in the brain is estimated to be about 86 billions: 1012≈ 240. If cell replications correspond to an iteration of a polynomial of degree 2, morphogenesis involves 40 replications. Human fetal cells replicate 50-70 times. Could the m almost copies of the basic system define a region of M4 corresponding to genes and cells? Could our body and brain be this kind of quantum coherent system with a very large number of almost copies of the same basic system. The basic units would be analogs of monads of Leibniz and form a polymonad. They could quantum entangle and interact.
  5. If n=heff/h0 corresponds to the dimension nE of the extension, it could be of the order 1014 or even larger for the gravitational magnetic body (MB). The MB could be associated with the Earth or even of the Sun: the characteristic Compton length would be about .5 cm for the Earth and half of the Earth radius for the Sun).
Could this give a recipe for building geometric and topological models for living organisms? Take sufficiently high degree polynomials f1 and f2 and find the corresponding 4-surface from the condition that they vanish. Holography=holomorphy vision would also give a model for the classical time evolution of this system as classical, and not completely deterministic realization of behaviors and functions. Also a quantum variant of computationalistic view emerges.

See the article TGD view about water memory and the notion of morphogenetic field or the chapter with the same title.

For a summary of earlier postings see Latest progress in TGD.

For the lists of articles (most of them published in journals founded by Huping Hu) and books about TGD see this.

See the article TGD view about water memory and the notion of morphogenetic field or the chapter with the same title.

For a summary of earlier postings see Latest progress in TGD.

For the lists of articles (most of them published in journals founded by Huping Hu) and books about TGD see this.

About the generation of matter-antimatter asymmetry in the TGD Universe?

I have developed a rather detailed view of interaction vertices (see this). Everything boils down to the question of what the creation of a fermion-antifermion pair is in TGD. Since bosonic fields are not primary fields (bosons are bound states of fermions and antifermions), the usual view about generation of fermion antifermion pairs does not work as such and the naive conclusion seems to be that fermions and antifermions are separately conserved.

Holography=holomorphy identification leading to an explicit general solution of field equations defining space-time surfaces as minimal surfaces with 2-D singularities at which the minimal surface property fails, is the starting point. A generalized holomorphism, which maps H to itself, is characterized by a generalized analyticity, in particular by a hyper-complex analyticity. The analytic function from H to H in the generalized sense depends on the light-like coordinate or its dual ( say -t+z and t+z in the simplest case) and the 3 remaining complex coordinates of H=M4/ti,esCP2.

Let's take two such functions, f1 and f2, and set them to zero. We get a 4-D space-time surface that is a holomorphic minimal surface with 2-D singularities at which the minimal surface property and holomorphy fails. Singularities are analogs of poles. Also the analogs of cuts can be considered and would look like string world sheets: they would be analogous to a positive real axis along which complex function z^(i/n) has discontinuity unless one replaces the complex plane with its n-fold covering. The singularities correspond to vertices. and the fundamental vertex corresponds to a creation of fermion-antifermion pair.

There are at least two types of holomorphy in the hypercomplete sense, corresponding to analyticity with respect to -t+z or t+z as a light-like coordinate defining the analogs of complex coordinates z and its conjugate. Also CP2 complex coordinates could be conjugated.

These two kinds of analyticities would naturally correspond to fermions and to antifermions identified as time-reflected (CP reflected) fermions. This time reflection transforms fermion to antifermion. This is not the reversal of the arrow of time occurring in a "big" state function reduction (BSFR) as TGD counterpart of what occurs in quantum measurement, which corresponds to interchange of the roles of the fermionic creation and annihilation operators.

When a fermion pair, which can also form a boson as a bound state, is created, the partonic 2-surface to which the fermion line is assigned, turns back in time. At the vertex, where this occurs, neither of these two analyticities applies: holomorphy and the minimal surface property are violated because at the vertex the type of analyticity changes.

Now comes the crucial observation: the number theoretic vision of TGD predicts that quantum coherence is possible in macroscopic and even astrophysical and cosmological scales and corresponds to the existence of arbitrarily large connected space-time regions acting as quantum coherence regions: field bodies as counterparts of Maxwellian fields can indeed be arbitrarily large.

For a given region of this kind one must choose the same kind of generalized analyticity, say -t+z or t+z even at very long scales. Only fermions or antifermions but not both are possible for this kind of space-time sheets! Does this solve the mystery of matter-antimatter asymmetry and does its presence demonstrate that quantum coherence is possible even in cosmological scales?

See the article What gravitons are and could one detect them in TGD Universe? or the chapter with the same title.

For a summary of earlier postings see Latest progress in TGD.

For the lists of articles (most of them published in journals founded by Huping Hu) and books about TGD see this.

Monday, June 03, 2024

Comparing TGD- and QFT based descriptions of particle interactions

Marko Manninen made interesting questions related to the relationship between TGD and quantum field theories (QFTs). In the following, I will try to summarize an overview of this relationship in the recent view about quantum TGD. I have developed the latest view of quantum TGD in various articles (see this, this, this, this, this, and this).

Differences between QFT and quantum TGD

Several key ideas related to quantum TGD distinguish between TGD and QFTs.

  1. The basic problem of QFT is that it involves only an algebraic description of particles. An explicit geometric and topological description is missing but is implicitly present since the algebraic structure of QFTs expresses the point-like character of the particles via commutation and anticommutation relations for the quantum fields assigned to the particles.

    In the string models, the point-like particle is replaced by a string, and in the string field theory, the quantum field Ψ(x) is replaced by the stringy quantum field Ψ(string), where the "string" corresponds a point in the infinite-D space of string configurations.

    In TGD, the quantum field Ψ(x) is replaced by a formally classical spinor field Ψ (Bohr orbit). The 4-D Bohr orbits are preferred extremals of classical action satisfying holography forced by general coordinate invariance without path integral and represent points of the "world of classical worlds" (WCW). The components of Ψ correspond to multi-fermion states, which are pairs of ordinary 3-D many-fermion states at the boundaries of causal diamond (CD).

    The gamma matrices of the WCW spinor structure are linear combinations of fermionic oscillator operators for the second quantized free spinor field of H. They anticommute to the WCW metric, which is uniquely determined by the maximal isometries for WCW guaranteeing the existence of the spinor connection. Physics is unique from its existence, as implied also by the twistor lift and number theoretic vision and of course, by the standard model symmetries and fields.

  2. In TGD, the notion of a classical particle as a 3-surface moving along 4-D "Bohr orbit" as the counterpart of world-line and string world sheet is an exact aspect of quantum theory at the fundamental level. The notions of classical 3-space and particle are unified. This is not the case in QFT and the notion of a Bohr orbit does not exist in QFTs. TGD view of course conforms with the empirical reality: particle physics is much more than measuring of the correlation functions for quantum fields.

    Quantum TGD is a generalization of wave mechanics defined in the space of Bohr orbits. The Bohr orbit corresponds to holography realized as a generalized holomorphy generalizing 2-D complex structure to its 4-D counterpart, which I call Hamilton-Jacobi structures (see this). Classical physics becomes an exact part of quantum physics in the sense that Bohr orbits are solutions of classical field equations as analogs of complex 4-surfaces in complex M4×CP2 defined as roots of two generalized complex functions. The space of these 4-D Bohr orbits gives the WCW (see this), which corresponds to the configuration space of an electron in ordinary wave mechanics.

  3. The spinor fields of H are needed to define the spinor structure in WCW. The spinor fields of H are the free spinor fields in H coupling to its spinor connection of H. The Dirac equation can be solved exactly and second quantization is trivial.

    This determines the fermionic propagators in H and induces them at the space-time surfaces. The propagation of fermions is thus trivialized. All that remains is to identify the vertices. But there is also a problem: how to avoid the separate conservation of fermion and antifermion numbers. This will be discussed below.

  4. At the fermion level, all elementary particles, including bosons, can be said to be made up of fermions and antifermions, which at the basic level correspond to light-like world lines on 3-D parton trajectories, which are the light-like 3-D interfaces of Minkowski spacetime sheets and the wormhole contacts connecting them.

    The light-like world lines of fermions are boundaries of 2-D string world sheets and they connect the 3-D light-like partonic orbits bounding different 4-D wormhole contacts to each other. The 2-D surfaces are analogues of the strings of the string models.

  5. In TGD, classical boson fields are induced fields and no attempt is made to quantize them. Bosons as elementary particles are bound states of fermions and antifermions. This is extraordinarily elegant since the expressions of the induced gauge fields in terms of embedding space coordinates and their gradients are extremely non-linear as also the action principle. This makes standard quantization of classical boson fields using path integral or operator formalism a hopeless task.

    There is however a problem: how to describe the creation of a pair of fermions and, in a special case, the corresponding bosons, when there are no primary boson fields? Can one avoid the separate conservation of the fermion and the antifermion numbers?

Description of interactions in TGD

Many-particle interactions have two aspects: the classical geometric description, which QFTs do not allow, and the description in terms of fermions (bosons do not appear as primary quantum fields in TGD).

  1. At the classical level, particle reactions correspond to topological reactions, where the 3-surface breaks, for example, into two. This is exactly what we see in particle experiments quite concretely. For instance, a closed monopole flux tube representing an elementary particle decomposes to two in a 3-particle vertex.

    There is field-particle duality realized geometrically. The minimal surface as a holomorphic solution of the field equations defines the generalization of the light-like world line of a massless particle as a Bohr orbit as a 4-surface. The equations of the minimal surface in turn state the vanishing of the generalized acceleration of a 3-D particle identified as 3-surface.

    At the field level, minimal surfaces satisfy the analogs of the field equations of a massless free field. They are valid everywhere except at 2-D singularities associated with 3-D light-like parton trajectories. At singularities the minimal surface equation fails since the generalized acceleration becomes infinite rather than vanishing. The analog of the Brownian particle experiences acceleration: there is an "edge" on the track.

    At singularities, the field equations of the whole action are valid, but are not separately true for various parts of the action. Generalized holomorphy breaks down. These 2-D singularities are completely analogous to the poles of an analytic function in 2-D case and there is analogy with the 2-D electrostatics, where the poles of analytic function correspond to point charges and cuts to line charges.

    This gives the TGD counterparts of Einstein's equations, analogs of geodesic equations, and also the analogy Newton's F=ma. Everything interesting is localized at 2-D singularities defining the vertices. The generalized 8-D acceleration Hk defined by the trace of the second fundamental form, is localized on these 2-D parton surfaces, vertices. One has a generalization of Brownian motion for a particle-like object defined by a partonic 2-surface or equivalently for a particle as 3-surface. Intriguingly, Brownian motion has been known for a century and Einstein wrote his first paper after his thesis about Brownian motion!

    Singularities correspond to sources of fermion fields and are associated with various conserved fermion currents: just like in QFTs. For a given spacetime surface, the source- vertex - is a discrete set of 2-D partonic surface just as charges correspond to poles of analytic function in 2-D electrostatics.

    At the classical level, the 2-D singularities of the minimal surfaces therefore correspond to vertices and are localized to the light-like paths of parton surfaces where the generalized holomorphy breaks down and the generalized acceleration Hk is there non-vanishing and infinite.

Description of the interaction vertices

  1. How to get the TGD counterparts of the QFT vertices?

    Vertices typically contain a fermion and an antifermion and the gauge potential, which is second quantized. Now, classical gauge potentials are not second quantized. How to obtain the basic gauge theory vertices?

    This is where the standard approximation of QFTs helps intuition: replace the quantized boson field with a classical one. This gives the vertex corresponding to the creation of a pair of fermions. Thanks to that, only the fermion and the sum of the antifermion numbers are conserved and the theory does not reduce to a free field theory. One should be able to do the same now. However, the precise formulation of this vision is far from trivial.

  2. The modified Dirac action should give elementary particle vertices for a given Bohr trajectory.

    There are two options:

    1. Modified gammas are defined as contractions of ordinary gamma matrices of H with the canonical momentum currents associated with the classical action defining the space-time surface. Supersymmetry is now exact: besides color and Poincare super generators there is an infinite number of conserved super symplectic generators and infinitesimal generalized superholomorphisms.

      This option does not work: the modified Dirac equation implies that the Dirac action and also vertices vanish identically. Although one has partonic 2-surfaces as singularities of minimal surfaces defining vertices, the theory is trivial because the usual perturbation theory does not work.

    2. Modified gamma matrices are replaced by the induced gamma matrices defined by the volume term (cosmological term of the classical action). Supersymmetry is broken but only at the 2-D vertices. The anticommutator of the induced gammas gives the induced metric. This is not true for the modified gammas defined by the entire action: in this case the anticommutators are rather complex, being bilinear in the canonical momentum currents. Is it possible to have a non-trivial theory despite the breaking of supersymmetry at vertices or or does the supersymmetry breaking make possible a non-trivial theory? This seems to be the case.
      1. In 2-D vertices, the generalized acceleration field Hk is proportional to the 2-D delta function and gives rise to the graviton and Higgs vertices. One obtains also the vertices related to gauge bosons from the coupling of the induced spinor field to induced spinor connection. Only the couplings to electroweak gauge potentials and U(1) K&aum;hler gauge potential of M4 are obtained. The failure of the generalized holomorphy is absolutely essential.
      2. Color degrees of freedom are completely analogous to translational degrees of freedom since color quantum numbers are not spin-like in TGD. Strong interactions are vectorial and correspond to Kähler gauge potentials.
      3. Generalized Brownian motion gives the vertices. One obtains the equivalents of Einstein's and Newton's equations at the vertices. The M4 part Mk of the generalized acceleration is related to the gravitons and the CP2 part Sk to the Higgs field. Spin J=2 for graviton is due to the rotational motion of the closed monopole flux tube associated with the gravitation giving an additional unit of spin besides the spin of Hk, which is S=1.
    3. Consider now the description of fermion pair creation.
      1. Intuitively, the creation of a fermion pair (and thus also a boson) corresponds to the fermion turning backwards in time. At the level of the geometry of the space-time surface, this corresponds to the partonic 2-surface turning backwards in time, and the same happens to the corresponding fermion line. Turning back in time means that effectively the fermion current is not conserved: if one does not take into account that the parton surface turns in the other direction of time, the fermion disappears effectively and the current must has a singular divergence. This is what the divergence of the generalized acceleration means.
      2. This implies that the separate conservation is lost for fermion and antifermion numbers. This means breaking of supersymmetry, of masslessness, of generalized holomorphy and also the generation of the analog of Higgs vacuum excitation as CP2 part Sk of the generalized acceleration Hk. The Higgs vacuum expectation is only at the vertices. But this is exactly what is actually wanted! No separate symmetry breaking mechanism is needed!
      3. The failure of the generalized holomorphy at the 2-D vertex means that the holomorphic partonic orbit turns at the singularity to an antiholomorphic one. For the annihilation vertex it could occur only for the hypercomplex part of the generalized complex structure.
      4. Remarkably, the states associated with connected 4-surfaces consist of either fermions or antifermions but not both. This explains matter antimatter asymmetry if quantum coherence is possible in arbitrarily long scales. In TGD, space-time surfaces decompose to regions containing either matter or antimatter and, by the presence of quantum coherence even in cosmological scales, these regions can be very large. The quantum coherence in large scales is implied by the number theoretic vision predicting a hierarchy of Planck constants labelling phases of ordinary matter behaving like dark matter (see for instance this).
      5. What is the precise mathematical formulation of this vision? This is where a completely unique feature of 4-dimensional manifolds comes in: they allow exotic smooth structures. Exotic smooth structure is the standard smooth structure with lower-dimensional defects. In TGD, the defects correspond in TGD to 2-D parton vertices as "edges" of Brownian motion. In the exotic smooth structure, the edge disappears and everything is soft. Pair creation and non-trivial theory is possible only in dimension D=4 (see this and this ).

      For a summary of earlier postings see Latest progress in TGD.

      For the lists of articles (most of them published in journals founded by Huping Hu) and books about TGD see this.