- Space-time surfaces as preferred extremals with CP2 projection of dimension D=2 or D=3 would naturally correspond to 4-D generalizations of so called Beltrami flows, which are integrable flows defined by the flow lines of the induced K\"ahler field. The existence of a global coordinate z varying along flow lines requires the integrability of the flow. Classical dissipation is absent so that these surfaces are excellent candidates for the space-time correlates of supra flows. The exponential of z gives a phase factor associated with the complex order parameter of a coherent state of Cooper pairs as a counterpart of the Berry phase. K\"ahler magnetic monopole flux defines the TGD counterpart of "novel" magnetic field.
- The identification of supra phases as dark matter as heff>h phases at magnetic flux quanta (tubes and sheets) implies that Cooper pairs correspond to dark fermions associated with the members of flux tube pair, which actually combine to form a closed flux tube. Also single electrons can define supraflow.
- The Cooper pairs must be created by bosonic oscillator operators constructed from fermionic oscillator operators by bosonization. This is possible only in 1+1-dimensional situations. Thanks to the Beltrami flow the situation is effectively 1+1-dimensional. Bosonization makes it possible to identify SU(2) Kac-Moody algebra, which has an interpretation in the TGD framework.
The formation of the Cooper pairs appears as a condition stabilizing the space-time sheets carrying dark matter and all preferred extremals could satisfy the conditions guaranteeing integrable flow and existence of a phase factor varying along flow lines. Could supra phases exist in all scales? Could the breaking of supra phases be only due to the finite size of the space-time sheets? Could even hydrodynamic flow involve super-fluidity of some kind - perhaps based on neutrino Cooper pairs as speculated earlier?
See the article Comparing the Berry phase model of super-conductivity with the TGD based model or the chapter with the same title.
For a summary of earlier postings see Latest progress in TGD.
No comments:
Post a Comment