Wednesday, April 24, 2024

About Biefeld Brown effect

Biefeld Brown effect is one of the effects studied by "free energy" researchers. What happens that an asymmetry capacitor for which the electrodes are of different size starts to move in the direction of the smaller electrode. The so called emdrive (see this), which I have commented here and here, could be also based on this effect. The has been a lot of overhyping such as vehicles moving with light-velocity to Mars and the failure of momentum conservation by the Biefeld Brown effect is real.

The recent experiments carried out by Buhler's team using capacitors in vacuum chamber acieve a levitation in gravitational field of Earth (see this). If this is really the case, new physics is involved.

Standard physics based models for the effect are discussed here. The electric fields associated with the capacitors are about 30 kV/dm, which is about 10 per cent of the electric field 30 kV/cm causing dielectric breakdown in air. Note that the electric field of Earth 10-30 V/dm and therefore roughly by a factor 1/1000 weaker.

Brown makes several important statements, including:

  1. The greatest force on the capacitor is created when the small electrode is positive.
  2. The effect occurs in a dielectric medium (air).
  3. The effect can be used for vehicle propulsion or as a pump of dielectric fluid.
  4. Brown s suggeset that the effect involves ionic motion.
  5. The detailed physics of the effect is not understood.
The models assume that the cm motion is due to the loss of energy and momentum to the environment and fail if the effect is possible in vacuum. The first model assumes ionic wind between the electrodes and predicts effect, which is 3 orders of magnitude too small. The model based on ionic drift is a rough order of magnitude model and predicts that the effect can have an order of magnitude consistent with the findings. The reason why the ionic wind predicts a smaller effect is that the absence of dissipation tends to reduce the effect since the ions arriving to the opposite electrode induce an opposite recoil.

The interview of Charles Buhler by Tim Ventura (see this) gives more details about what has been found in the experiments giving a thrust which is now around one g. Buhler's team has been developing the propellantless propulsion based on asymmetric capacitors understood in a very general sense, i.e. there are just two electrodes which are asymmetric. The work is completely independent of NASA and has been patented. From the interview I learned the following.

  1. Electric field is more intense at the smaller electrode and is believed to make the effect larger.
  2. The electrodes are cased which means that there is no leakage of charge between them. The claim is that this prevents all kinds of leakage currents between the electrodes. The system is also enclosed in high vacuum and this allows use of lower voltages. There are two types of charges involved. The free charge appearing in conductors and the bound charge appearing in insulators. The interpretation would be in terms of electrons. It is reported that at low voltage free charge dominates the effect and at higher voltages bound charge dominates. The interpretation could be in terms of ionization in high enough voltage in which bound charges go somewhere.
  3. Mere charge and electric field are enough and there is no external energy feed. The mere existence of the electric field gives rise to the thrust. In the standard physics framework, this raises problems with the conservation laws of energy and momentum.
I have already earlier commented on the Biefeld Brown effect from the TGD point of view (see this, this and this).
  1. In standard physics the center of mass of the system should remain at rest if the system is in vacuum and there is no charge leakage between the electrodes. The findings of Buhler's team demonstrate that there is a center of mass motion in vacuum. Therefore there should exist a momentum and energy exchange with some unidentified system. Charges and/or radiation should leave the capacitor to produce a recoil.

    If the charges leaving a given electrode return to the system, the only possibility is that they end up at the opposite electrode. This cannot take place via standard physics mechanisms in the experiments of Buhler's team since the electrodes are cased. The charges must go to some third system and possibly return back.

  2. The findings suggest that the charges involved are conduction electrons at low voltages and bound electrons at high voltages and that the bound electrons increase the thrust dramatically. In the latter case an ionization of atoms is required.

    If the electronic charge is lost from a negatively charged electron, a current is needed to preserve the charges of the electrode. If only the negatively charged electrode emits electronic charge, the system develops a positive charge. The system would experience a force in the electric field of Earth. This cannot explain the effect. Since the Earth is negatively charged, the force would tend to decrease the thrust. The generation of net positive charge could however be relevant for the effect.

  3. If negative charge is lost and there is no energy and momentum feed from outside, the electrostatic energy of the system must decrease. The rate of energy loss must be rather slow since the thrust is reported to continue for a rather long time.

    Part of the electrostatic energy should go to the cm motion of the system. Where does the momentum and energy leaving the system responsible for thrust as the recoil effect go? In the experiments of Buhler's team it cannot go to the environment as it is understood in the standard physics.

What could TGD say about the situation? TGD predicts that besides classical gravitational fields of the Sun, Earth and other planets are responsible for very large values of effective Planck constant heff for ordinary particles located at the gravitational monopole flux tubes. The generalization of this proposal for electric fields is discussed here. Examples are electric fields of DNA, cell, ionospheres of the Earth and Sun, and also of large capacitor-like systems.
  1. Are the charged particles transferred to electric or magnetic flux tubes of the field body (FB) as dark charges as in the Pollack effect (see this)? Can one locate the relevant part of the FB to the interior or exterior of the electrodes? Could the charge transfer via the FB take place by an analog of the Pollack effect and its reversal? Why would the charge transfer be for electrons?

    Is there a fast charge transfer only between the electrodes via FB or is there an accumulation of positive and negative charges at the FB? It is reported that the thrust continues also in absence of a current feed so that there could be accumulation of charges from both electrodes to the FB. Also the electric body of the Earth could be involved.

    Also mere radiation to the FB could produce a recoil effect but would not produce charge transfer. The required force would be between FB and the capacitor system. The force is known to be directed to the smaller electrode on the smaller electrode, especially so if it has a positive charge.

  2. If the charge transfer occurs between the electrodes via the FB and no charge remains at the FB, center of mass motion requires that part of the energy is dissipated, perhaps as dark photons at the magnetic or electric body or as ordinary photons.

    Suppose that the net momentum transferred to a given flux tube is parallel to it. The net momentum, which is transferred is the sum of the momenta and in the case of parallel plates of infinite size directed towards another plate. The recoil is in the opposite direction. The deviation of the distribution of flux tubes from spherical symmetry favors transfers of momenta directed towards the opposite electrode so that recoil is away from it. Why should the smaller electrode get a larger recoil momentum? Why should the smaller area favor this?

Could macroscopic quantum coherence predicted by TGD explain why the smaller electrode gets a larger recoil momentum?
  1. TGD predicts large scale quantum coherence and this could be highly relevant for the Biefeld Brown effect (see this). The electric Planck constant for a pair of charged particle with charge e and for charged system with charge is heff= hem= Qe/β0, where β0= v0/c≤ 1 is a velocity parameter. For the pair of capacitor plates would be given by hem= Q20. hem would characterize charged particles at the electric body of the system consisting of electric flux tubes, which can be also magnetic since electric flux tubes can obtained as small deformations of the magnetic monopole tubes!

    Note that one cannot exclude the possibility of Maxwellian half-monopole flux tubes having boundary, which I have proposed to be important in the temperature region above the transition temperature in the case of high Tc superconductors (see this).

  2. Electric field strength rather than voltage is relevant for the effect. The charge Q of the capacitor as the electric flux Q= ∫ E• dS/ε0 is indeed proportional to the electric field and this suggests that macroscopic quantum coherence might be important (see this). The effect could become large for strong field strengths suggesting that the transfer of charges to the electric body is a collective quantum effect proportional to the square N2 of the number N of charges transferred. If the increase of voltage has been done by keeping the size constant in the experiments of Buhler's team, the dramatic increase of the thrust can be understood in this way.
  3. For a particle of mass m, the electric Compton length Λ em= hem/m= Qe/β0m serves as a good guess for the lower bound for the quantum coherence length and is for proton by a factor 1/2000 smaller than for electron. The first guess for the thickness d of the electric flux tube is as d=Λem= 2π Qe/β0m. Here m would refer to electron mass. This would explain why the transfer of electrons is what matters in the experiments. Hitherto its assumed that only valence electrons can become dark having heff> h. These findings would require that also bound electrons could become dark.
  4. Can one assume that the entire electrodes form quantum coherent systems or should one assume that only the flux tubes are such systems? Suppose that the latter option is realized. A natural first guess is that the flux tube radius d is equal to the electric Compton length so that one would have d= 2πQe/β0m. The entire electrodes need not be quantum coherent systems.

    For instance, if the smaller electrode corresponds to a single flux tube, it decompose to smaller flux tubes near the larger electrode giving rise to smaller quantum coherent units with charge Qlarge/Qsmall= Ssmall/Slarge and having therefore also a smaller values of electric flux and of Maxwellian electric field. Quite generally, the flux tubes from the smaller electrode would decompose in this way at the larger electrode.

  5. The geometric asymmetry of the electrodes, or more precisely the convergence of flux tubes at the smaller electrodes, is believed to somehow explain the thrust towards the smaller electrode.

    Suppose that the flux tubes correspond to bundles of electric field lines as predicted by Maxwell's theory. Suppose that the flux tube acts as a quantum coherent unit. The charges Q(tube) of the flux tubes near the small resp. large electrode are in the ratio Ssmall/Slarge of their areas. By quantum coherence the rate for the momentum transfer is proportional to Q2(tube) and is therefore larger near the smaller electrode. The transfer rates are proportional to the square of the charge per flux tube and in the ratio (Ssmall/Slarge)2. This predicts that the rate of momentum transfer is higher at the smaller electrode.

  6. The thrust is reported to be larger when the smaller electrode has a positive charge: I do not know whether this is the case in the experiments of Buhler's team. This does not seem to fit the proposed picture. If only electrons are transferred to the electric body, one would expect that the rate is larger at the negatively charged electrode.
See the article About long range electromagnetic quantum coherence in TGD Universe or the chapter with the same title.

For a summary of earlier postings see Latest progress in TGD.

For the lists of articles (most of them published in journals founded by Huping Hu) and books about TGD see this.

No comments: