Monday, November 08, 2021

Superdeterminism and TGD

Gary Ehlenber sent me an article of Sabine Hossenfelder and Tim Palmer (see this). The article seems like a good collection of arguments pro and con superdeterminism.

When I encounter this kind of proposal, I ask a simple question. What new phenomena are predicted and what anomalies the new approach solves? In the case of superdeterminism, the list of this kind of phenomena is very short. Therefore superdeterminism looks to me like an attempt to return to the good old days before quantum theory and to save the materialistic/physicalistic world view implying that the notions of ethics and moral are illusions.

It must be added that the entire theoretical physics community suffers and also the community of rebels from the same conservatism and superdeterminism represents only an extreme example of this conservatism.

In my view, one should start from where we are now and try to see what in our conceptual landscape is wrong and what new notions and ideas are needed.

To me, the only way forward is to accept non-determinism and the basic paradox of quantum measurement theory without attempts to "interpret" and make a simple question: What goes wrong in our ontology? Does it really make sense to give up entire ontology as Copenhagen interpretation suggests?

There are many deep problems besides the measurement problem.

  1. Is our view about time somehow wrong? Should we distinguish between causations of classical physics and of free will. We experience free will directly: should we accept it as real and perhaps assign it to quantum jump?
  2. Is the assumption about a fixed arrow of time correct? We know experienced time and geometric time are different. Should we accept this also as theoreticians?
  3. Does physics really become classical and deterministic on some scale? Does it really do so? Could this be an illusion due to wrong ontology?
  4. Is deterministic classical physics an exact part of quantum theory?: after all, every quantum measurement is interpreted in terms of classical correlates.
  5. Does the mysterious entanglement have classical, geometric space-time correlates? ER-EPR correspondence could be interpreted in this manner.
  6. There are also the notions of wave-particle duality/position-momentum duality: do we really understand them? Position momentum duality is lost in quantum field theory since coordinates as dynamical variables become parameters. Shouldn't we worry about this?
TGD allows us to answer these questions.
  1. Particle as a point-like entity is non only a source of divergence problems but also suggest local realism, which prevents classical space-time correlates for the notion of entanglement. In TGD, particles as 3-surfaces solve the divergence problem and the new view about classical fields as surfaces leads to the notion of field/magnetic body (MB). Flux tubes connecting particle-like 3-surfaces serve as space-time correlates/prerequisites of entanglement. Flux tubes replace wormholes in ER-EPR correspondence. Many-sheeted space-time is a closely related second new notion.

    MB carrying dark matter as heff>h phases brings in a totally new level to the description and has a key role in biology. heff phases emerge from a generalization of physics: number theoretic vision and geometric view about physics are dual and the duality actually generalizes the position-momentum space duality lost in quantum field theories.

  2. The measurement problem producing myriads of interpretations is the key problem. Here our notion of time is the source of problems. Despite the obvious differences between experienced and subjective time, we stubbornly continue to identify them. Second stubborn assumption is that the arrow of time is fixed despite the fact that in self-organization the arrow of time effectively changes. The standard explanation is in terms of non-equilibrium thermodynamics but this might be only a part of the story. In particular, in living matter.

    In practical quantum theory (quantum optics) one is forced to introduce also the notion of weak measurement. It has no real counterpart in the standard picture. It is analogous to classical measurement: no dramatic changes.

    In quantum theory based zero energy ontology, "big" and "small" state function reductions (BSFRs and SSFRs) emerge naturally. BSFR is the counterpart of ordinary quantum measurement and changes the arrow of time. SSFR is the counterpart of weak measurement and preserves the arrow of time. The experiments of Minev et al and those of Libet provide direct support for BSFR. BSFR also allows us to understand why physics looks classical, not only in long length scales, but always for a system which has an arrow of time opposite that of the system monitored.

    BSFR makes possible dissipation with a reversed arrow of time looking like self-organization. The postulated extremely complex biological programs would be just dissipation with an opposite arrow of time implied by a generalization of the second law. Homeostasis as a paradoxical ability to stay near (quantum) criticality would also have a trivial explanation.

    BSFR leads also to the vision about life and death as universal phenomena not limited to bio-chemical systems only.

  3. Number theoretic vision involving M8-H duality generalizing position-momentum duality to space-time level leads to the notion of cognitive representation providing not only unique discretization of space-time surface but also correlates of cognition. Galois group becomes a symmetry group and Galois confinement stating that quarks as fundamental fermions have 4-momenta which are algebraic integers form states with total 4-momenta whose components are ordinary integers by periodic boundary conditions. This means Galois confinement which could be behind the formation of bound states universally.
See the article TGD as it is towards end of 2021.

For a summary of earlier postings see Latest progress in TGD. Articles and other material related to TGD. 

No comments: