One could also consider a definition of what one might call dynamical homotopy groups as a genuine characteristics of WCW topology. The first prediction is that the values of conserved classical Noether charges correspond to disjoint components of WCW. Could the natural topology in the parameter space of Noether charges zero modes of WCW metric) be p-adic and realize adelic physics at the level of WCW? An analogous conjecture was made on basis of spin glass analogy long time ago. Second surprise is that the only the 6 lowest dynamical homotopy/homology groups of WCW would be non-trivial. The Kähler structure of WCW suggets that only Π0, Π2, and Π4 are non-trivial.
The interpretation of the analog of Π1 as deformations of generalized Feynman diagrams with elementary cobordism snipping away a loop as a move leaving scattering amplitude invariant conforms with the number theoretic vision about scattering amplitude as a representation for a sequence of algebraic operation can be always reduced to a tree diagram. TGD would be indeed topological QFT: only the dynamical topology would matter.
For details see the chapter Recent View about K\"ahler Geometry and Spin Structure of "World of Classical Worlds" of "Quantum physics as infinite-dimensional geometry" or the article Could One Define Dynamical Homotopy Groups in WCW?.
For a summary of earlier postings see Links to the latest progress in TGD.
2 comments:
I meant to post that comment on the other blog post to this one.. oops, here it is. I read some of the paper.. this is incredible...
http://arxiv.org/abs/1503.07851
this seems related to 3.8#SpectralFunctions of @Book{bochner1955harmonic,
Title = {Harmonic Analysis and the Theory of Probability},
Author = {Bochner, Solomon},
Publisher = {University of California Press},
Year = {1955},
Series = {California Monographs in mathematical sciences},
}
or am I getting that confused with something else? I remember thinking it was the appearance of the polynomials and the anti-symmetrization involing the binomial processes and theorem, etc.
$\lim_{n \rightarrow \infty} \sum_{j = 1}^n \sum_{k = 1}^n \frac{f_{\gamma}\left( \frac{j}{n} \right) f_{\gamma}^{\ast} \left( \frac{k}{n} \right) Q\left( \frac{j - k}{n} \right)}{n^2} = \lim_{n \rightarrow \infty} E \left|\sum_{j = 1}^n \frac{f_{\gamma} \left( \frac{j}{n} \right) g \left(\frac{j}{n} \right)}{n} \right|^2$
see a (much more readable image) at http://i.imgur.com/FhLxAO4.png ;-)
--crοw
oops, wrong book reference... here is book with the formula I transliterated
https://books.google.com/books?id=xM3PStPHY-sC&pg=PA74&lpg=PA74&dq=%22it+is+unique+aside+from+an+additive+constant+and+a+harmless+ambiguity+at+its+jumps%22&source=bl&ots=kfl99ZVaKa&sig=f0AwhCjhtRDXp-xkiXJ2V85oEXQ&hl=en&sa=X&ved=0CCEQ6AEwAGoVChMI3tD9hui9xwIVzJkeCh1IJg7q#v=onepage&q=%22it%20is%20unique%20aside%20from%20an%20additive%20constant%20and%20a%20harmless%20ambiguity%20at%20its%20jumps%22&f=false
Post a Comment